top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Integrating Nanorobotics with Biophysics for Cancer Treatment
Integrating Nanorobotics with Biophysics for Cancer Treatment
Autore Malviya Rishabha
Edizione [1st ed.]
Pubbl/distr/stampa Bristol : , : Institute of Physics Publishing, , 2024
Descrizione fisica 1 online resource (291 pages)
Altri autori (Persone) YadavDeepika
SundramSonali
KadrySeifedine
S VirkGurvinder
Collana Biophysical Society-IOP Series
ISBN 9780750360197
9780750360203
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Foreword -- Author biographies -- Rishabha Malviya -- Deepika Yadav -- Sonali Sundram -- Seifedine Kadry -- Gurvinder Singh Virk -- About the book -- Chapter Nanorobotics: materials, design, and technology -- 1.1 Introduction -- 1.2 Nanorobot design and development -- 1.3 Nanorobots designed for a broad spectrum of healthcare uses -- 1.4 The applications of nanorobots in the field of biomedicine -- 1.4.1 Microbiology -- 1.4.2 Cancer therapy using nanorobots -- 1.4.3 Biologically inspired nanorobots -- 1.4.4 The prospects of nanorobots for use in hematology -- 1.4.5 The neurosurgical prospects of nanorobots -- 1.5 The prospects of nanorobots for use in dentistry -- 1.6 The use of nanorobots in gene therapy -- 1.7 The biocompatibility and toxicity of nanorobots -- 1.8 Conclusions -- References and further reading -- Chapter Robotics and biophysics: technology advances and challenges in organic and inorganic domains -- 2.1 Introduction -- 2.2 An introduction to the use of robots in the field of biophysics -- 2.2.1 The importance of robots in the field of biophysical research -- 2.2.2 The possible application of robots in areas of biophysical investigation -- 2.2.3 Biophysical applications of robot-based systems -- 2.3 Technology advances of soft robotics in the organic domain -- 2.3.1 The applications of soft robots in medical and biological settings -- 2.3.2 Biomimetic design -- 2.3.3 The benefits of biomimetic design in biophysics -- 2.3.4 The challenges of applying biomimetic design principles in the field of biophysics -- 2.4 Developments in inorganic measurement technology -- 2.4.1 The integration of advanced prosthetic limbs and biophysics -- 2.4.2 Robotics in diagnostic imaging and laboratory tasks -- 2.5 Challenges in integration -- 2.5.1 Ethical and regulatory issues.
2.5.2 Regulatory challenges in the development of biophysics-based robotic systems -- 2.5.3 Interdisciplinary collaboration -- 2.6 Future prospects -- 2.7 Conclusions -- References -- Chapter Nanorobots: a primer for deciphering the biophysics of cancer -- 3.1 Introduction -- 3.2 Multiscale cancer biophysics -- 3.3 The biology of cancer cells -- 3.4 The reason for a biophysical strategy for cancer -- 3.5 Nanorobots -- 3.6 Nanorobots for the detection and treatment of cancer -- 3.7 Conclusions -- References and further reading -- Chapter The biophysics of cancer: management at the nanoscale -- 4.1 Introduction -- 4.2 Important aspects of nanorobots for cancer therapy -- 4.3 Nanorobot propulsion systems for anticancer medicine delivery -- 4.3.1 Nanorobots propelled by magnets -- 4.3.2 Nanorobots propelled by ultrasound -- 4.3.3 Biologically propelled nanorobots -- 4.3.4 Hybrid-drive nanorobots -- 4.3.5 Nanorobots propelled by other power sources -- 4.4 Precision cancer diagnosis and treatment with nanorobots -- 4.4.1 The identification and assessment of cancerous conditions -- 4.4.2 Gene therapy involving the precise administration of nucleic DNA -- 4.4.3 Vascular infarction in tumors -- 4.5 Nanorobots in cancer therapy: potential and clinical problems -- 4.5.1 The complexity and accuracy of the technology -- 4.5.2 Concerns regarding personal safety -- 4.5.3 Regulatory concerns -- 4.5.4 Scalability -- 4.5.5 Cost -- 4.5.6 Quality control -- 4.5.7 Management of the supply chain and its components -- 4.6 Future perspectives and conclusions -- References -- Chapter Magnetomechanical systems at the micro/nanoscale for cancer management -- 5.1 Introduction -- 5.2 Cancer therapy using magnetomechanical particles -- 5.2.1 Principle -- 5.3 The magnetomechanical identification of telomerase and nuclear acids in cancerous cells.
5.4 The therapeutic applications of telomerase studies in cancer -- 5.5 The clinical applications of telomeres and telomerase in oncology -- 5.6 Conclusions -- Funding -- Conflict of interest -- References -- Chapter The role of micro/nanorobotics in personalized healthcare -- 6.1 Introduction -- 6.2 Surgical operations -- 6.2.1 Biopsy and sample collection -- 6.2.2 The invasion or penetration of tissues -- 6.2.3 The breakdown of biofilms -- 6.2.4 Deliveries conducted within cells -- 6.3 Diagnosis -- 6.3.1 Biological sensors -- 6.3.2 Isolation -- 6.3.3 Physical sensors -- 6.4 Imaging and diagnostic medicine -- 6.4.1 Optical imaging -- 6.4.2 Imaging using ultrasound -- 6.4.3 Imaging using radionuclides -- 6.5 Prospective view -- 6.6 Regulatory challenges in personalized healthcare -- 6.7 Conclusions -- References and further reading -- Chapter The development of active nanorobots in personalized healthcare -- 7.1 Introduction -- 7.2 Nanorobots -- 7.3 Nanorobots in healthcare -- 7.3.1 Helices -- 7.3.2 Nanorods -- 7.3.3 DNA nanorobots -- 7.4 Applications of nanorobots in personalized healthcare -- 7.4.1 The use of nanorobots in dentistry -- 7.4.2 The use of nanorobots in cancer treatment -- 7.4.3 The application of nanorobots in the treatment and diagnosis of diabetes -- 7.4.4 The application of nanorobots in neurology -- 7.4.5 The application of nanorobots in hematology -- 7.5 Future perspectives -- 7.6 Conclusions -- References -- Chapter Nanozyme-based nanorobots for cancer treatment applications -- 8.1 Introduction -- 8.2 Nanomedicine and nanotheranostics -- 8.3 Targeted tumor vessel infarction with nanomedicine -- 8.4 Targeted tumor drug delivery systems -- 8.4.1 Passively targeted drug delivery systems -- 8.4.2 Actively targeted medication delivery systems -- 8.5 Micro- and nanorobots -- 8.5.1 Chemically powered micro- and nanorobots.
8.5.2 External-field-powered micro- and nanorobots -- 8.5.3 Biohybrid micro- and nanorobots -- 8.6 Difficulties with cancer nanomedicines -- 8.7 Future perspectives -- 8.8 Conclusions -- References -- Chapter Progress in the bioelectrochemical and biophysical diagnostic profiling of malignant cancer cells -- 9.1 Introduction -- 9.2 The use of biosensors in clinical assessment -- 9.3 Electrochemical biosensors -- 9.3.1 Various electrochemical measurement methods -- 9.4 Conventional apoptotic and metastatic cell detection methods -- 9.5 Bioelectricity in cancer processes -- 9.5.1 Cancer and ion channels -- 9.5.2 Calcium channels -- 9.5.3 Sodium channels -- 9.5.4 Intracellular potassium channels -- 9.5.5 Chloride channels -- 9.5.6 Piezoelectric channels -- 9.6 The detection of bioelectric characteristics -- 9.7 Bioelectrical modifications -- 9.8 Electrification and extracellular vesicles -- 9.9 Biosensors for in vitro cancer cell assessment -- 9.10 Conclusions -- References and further reading -- Chapter Wireless microrobots: the next frontier in medical advancements -- 10.1 Introduction -- 10.2 Microrobots and their potential therapeutic applications -- 10.2.1 The imaging of functional capabilities for disorder diagnosis -- 10.2.2 Mobile situational awareness for disease diagnosis and health management -- 10.3 Targeted therapy -- 10.4 The applications of microrobotics in medicine, particularly in the human cardiovascular system and the bloodstream -- 10.5 Biomechanical restrictions that impede microrobots -- 10.6 Current challenges facing miniaturized biomedical robots and their potential future applications -- 10.7 Methods for the actuation and control of therapeutic microrobots -- 10.8 Conclusions -- References and further reading -- Chapter Revolutionizing cancer treatment using micro/nanorobotic devices -- 11.1 Introduction.
11.2 Nano/microrobots for drug delivery -- 11.3 Cancer-targeted drug delivery systems -- 11.3.1 Enhancing treatment precision using passive drug delivery -- 11.3.2 Enhancing treatment precision using active drug targeting -- 11.3.3 Surgical advancements with micro/nanorobotic assistance -- 11.3.4 Robotic biosensing -- 11.3.5 Enhancing drug delivery with micro/nanorobot mobility -- 11.3.6 Field-guided micro/nanorobotics -- 11.4 Conclusions and prospects -- References and further reading -- Chapter Cyborgs and cyberorgans: biosecurity in biorobotics for healthcare-a case study -- 12.1 Introduction -- 12.2 Biorobotics in healthcare -- 12.3 Cyborgs and cyberorgans in healthcare -- 12.4 Case study -- 12.5 Patent list -- 12.6 Conclusions -- References.
Record Nr. UNINA-9911026074003321
Malviya Rishabha  
Bristol : , : Institute of Physics Publishing, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Multi-drug resistance in cancer : mechanism and treatment strategies / / edited by Rishabha Malviya, Arun Kumar Singh, and Deepika Yadav
Multi-drug resistance in cancer : mechanism and treatment strategies / / edited by Rishabha Malviya, Arun Kumar Singh, and Deepika Yadav
Pubbl/distr/stampa Hoboken, NJ : , : John Wiley & Sons, , [2023]
Descrizione fisica 1 online resource (216 pages)
Disciplina 614.5999
Soggetto topico Multidrug resistance
Drug resistance in cancer cells
Drug interactions
Soggetto non controllato Pharmacology
Medical
ISBN 1-394-20986-X
1-394-20985-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- Foreword -- Preface -- Acknowledgment -- Chapter 1 Multi-Drug Rmesistance in Cancer: Understanding of Treatment Strategies -- 1.1 Introduction -- 1.2 Both Congenital and Developed Resistance to Drugs -- 1.2.1 Intrinsic Resistance -- 1.2.2 Acquired Resistance -- 1.3 Drug-Resistance Mechanisms -- 1.3.1 Increased Efflux of Drugs -- 1.3.2 Impact on Medication Target -- 1.3.3 Improved DNA-Damage Repair -- 1.4 Senescence Escape -- 1.5 Epigenetic Alterations -- 1.6 Tumor Heterogeneity -- 1.7 Tumor Microenvironment -- 1.8 Epithelial to Mesenchymal Transition -- 1.9 Conclusion -- References -- Chapter 2 Understanding Different Mechanisms Involved in Cancer Drug Resistance: Proposing Novel Strategies to Overcome MDR -- 2.1 Introduction -- 2.2 Drug Resistance: Internal and External Variables -- 2.2.1 Phenotypic Variation of Tumors -- 2.2.2 Tumor Microenvironment -- 2.2.3 Cancer Stem Cells -- 2.2.4 Inactivation of the Anticancer Drugs -- 2.2.5 Multi-Drug Resistance -- 2.2.6 Increasing the Release of Drugs Outside the Cell -- 2.2.7 Reducing the Absorption of the Drugs -- 2.2.8 Inhibition of Cell Death (Apoptosis Pathway Blocking) -- 2.3 Improving the Pharmacokinetics -- 2.4 Changing the Aim of the Chemotherapy Agents -- 2.5 Improving the DNA Repair Process -- 2.5.1 Augmentation of a Gene -- 2.5.2 Epigenetic Altering Caused Drug Resistance -- 2.6 MicroRNA in Cancer Drug Resistance -- 2.7 Conclusion -- References -- Chapter 3 Molecular Mechanism of Multi-Drug Resistant Cancer Cells -- 3.1 Introduction -- 3.2 Types of Drug Resistance -- 3.3 Mechanisms of Drug Resistance -- 3.3.1 Drug Efflux via ABC Transporters -- 3.3.2 Permeability Glycoprotein/MDR-1 -- 3.3.3 Multi-Drug Resistance Protein -- 3.3.4 Breast Cancer Resistance Protein -- 3.4 Reduction in Drug Activity and Cellular Absorption.
3.5 Instability in the Genome and Medication Resistance -- 3.5.1 Mutation and Medication Target Alteration -- 3.5.2 Restoration of DNA Integrity -- 3.5.3 Resistant Genes and Epigenetic Modifications -- 3.5.4 Drug Resistance and Programmed Cell Death -- 3.6 RNA Interference Therapy -- 3.7 Methods of Physical Intervention to Treat MDR -- 3.8 Conclusion -- References -- Chapter 4 Natural Products for Clinical Management of Drug Resistant Cancer Cells -- 4.1 Introduction -- 4.2 Resistance Mechanisms -- 4.3 Antitumor Plants for Multi-Drug-Resistant Cells -- 4.4 Qualea Species and Their Medical Applications -- 4.5 Antitumor Activity of Qualea Grandiflora and Qualea Multiflora -- 4.6 Conclusion -- References -- Chapter 5 Understanding of Autophagy to Combat MDR During Anticancer Therapy -- 5.1 Introduction -- 5.2 Mechanisms of Autophagy -- 5.2.1 Phagophore Assembly -- 5.2.2 Autophagosome Formation and Maturation -- 5.2.3 Autolysosome Degradation -- 5.2.4 Core Regulator of Autophagy -- 5.3 Mechanisms of MDR -- 5.4 Correlation Between Autophagy and Multi-Drug Resistance -- 5.5 The Cytoprotective Effect of Autophagy in the Regulation of Multi-Drug Resistance -- 5.6 Increased Autophagy Facilitates Multi-Drug Resistance -- 5.7 Autophagy Inhibition Improves Chemotherapy in MDR Cancers -- 5.8 Overcoming MDR With Autophagic Cell Death -- 5.9 Autophagy Kills Apoptosis-Deficient MDR Cancer Cells -- 5.10 Autophagy Promotes Chemosensitivity -- 5.11 Conclusion -- References -- Chapter 6 Transporter Inhibitors: A Chemotherapeutic Regimen to Improve the Clinical Outcome of Colorectal Cancer -- 6.1 Introduction -- 6.2 CRC Transporters or ATP-Binding Cassette -- 6.2.1 ABC Transporter Family -- 6.2.2 ABC Transporters and CRC Initiation -- 6.2.3 ABC Transporters and the Resistance of Cancer Cells to Chemotherapy.
6.3 Clinical Evidence for the Function of ABC Transporters in CRC MDR -- 6.3.1 Intrinsic Drug Resistance in Colon Cancer Upregulation of P-gp at Detection -- 6.3.2 Proliferating Tumor Cells Have MRP1 on Their Surface -- 6.4 General Approaches -- 6.5 By Blocking Tyrosine Kinase Inhibitors from Inhibiting MDR Transporters -- 6.6 Components Produced from Natural Sources that Inhibit MDR Transporters -- 6.7 Inhibiting ABC Transporters in Other Ways for CRC MDR Circumvention -- 6.8 Challenges and Future Prospective -- 6.9 Conclusion -- References -- Chapter 7 Epithelial to Mesenchymal Transition (EMT): Major Contribution to Cancer Drug Therapy Resistance -- 7.1 Introduction -- 7.2 EMT and Tumor Resistance: In Vitro, In Vivo, and Clinical Trials -- 7.3 Tumor Microenvironment Regulates EMT -- 7.3.1 Hypoxia -- 7.3.2 The Extracellular Matrix -- 7.3.3 The Inflammatory and Immune Microenvironment -- 7.3.4 EMT Microenvironment: Medication Resistance -- 7.4 Drug Resistance and EMT Bioinformatics -- 7.4.1 Bioinformatics and Pharmacogenomics to Optimize Drugs and Targets and Identify Medication Resistance -- 7.4.2 Drug Resistance: Hereditary or Acquired -- 7.4.3 Therapies for EMT-Induced Medication Resistance -- 7.5 Conclusion -- References -- Chapter 8 Advances in Metallodrug-Driven Combination Therapy for Treatment of Cancer -- 8.1 Introduction -- 8.2 Cancer Treatment Using Combination Therapy -- 8.3 Combined Treatment with Metallodrugs for Cancer Treatment -- 8.3.1 Platinum Metallodrugs -- 8.4 Nonplatinum Metallodrugs -- 8.5 Conclusion -- References -- Chapter 9 Novel Strategies Preventing Emergence of MDR in Breast Cancer -- 9.1 Introduction -- 9.2 Breast Cancer Categorization and Epidemiological Studies -- 9.2.1 Treatment Options for Women With Breast Cancer -- 9.3 Multi-Drug Resistance in Breast Cancer -- 9.3.1 Breast Cancer Chemoresistance.
9.3.2 Multi-Drug Resistance and ABC Channels in Breast Cancer -- 9.4 Drug Efflux Transporters in Breast Cancer -- 9.4.1 Exocytosis Transporters in the Stem Cell Population of Breast Cancer -- 9.4.2 Drug Efflux Channel Upregulation in Breast Cancer -- 9.4.3 Techniques for Breast Cancer MDR Reversal -- 9.4.4 Direct Pharmacologic Inhibition With MDR Inhibitors -- 9.5 Excessive Synthesis or Overexpression of Transporters for the Expulsion of Drugs -- 9.6 Nanotherapeutic Approach for MDR Reversal -- 9.7 Breast Cancer's MDR Cure Problems and Future Outlook -- 9.8 Conclusion -- References -- Index -- EULA.
Record Nr. UNINA-9910830428803321
Hoboken, NJ : , : John Wiley & Sons, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui