top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Innovative approaches towards ecological coal mining and utilization / / Heping Xie, Chengwei Lv, Jiuping Xu
Innovative approaches towards ecological coal mining and utilization / / Heping Xie, Chengwei Lv, Jiuping Xu
Autore Xie Heping
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH, , [2022]
Descrizione fisica 1 online resource (381 pages)
Disciplina 363.738746
Soggetto topico Clean coal technologies
Coal - Environmental aspects
Coal mines and mining - Environmental aspects
Soggetto genere / forma Electronic books.
ISBN 3-527-82512-6
3-527-82511-8
3-527-82510-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Preface -- Acknowledgments -- Chapter 1 Technical Developing Pathway of Ecological Coal Mining -- 1.1 Background Introduction -- 1.2 Coal Mining Technology Development -- 1.2.1 Literature Analyses -- 1.2.1.1 Data Analysis System -- 1.2.1.2 Knowledge Diagram -- 1.2.2 Three Periods of Coal Mining Technology -- 1.2.2.1 Competition Phase -- 1.2.2.2 Diffusion Phase -- 1.2.2.3 Shift Phase -- 1.3 Discussion -- References -- Chapter 2 Developing Trending Toward Ecological Coal Utilization -- 2.1 Background Introduction -- 2.2 Coal Utilization Evolution -- 2.2.1 Initial Technological Competition -- 2.2.2 Fierce Innovative Diffusion -- 2.3 Coal Utilization Development Trends -- 2.3.1 Disruptive Integrated Shift -- 2.3.2 No‐Coal‐on‐Ground Integrated Energy System -- 2.4 Discussion -- References -- Chapter 3 Multiple Coal Seam Coproduction‐Oriented Equilibrium Approach Toward Coal-Water Conflict -- 3.1 Background Review -- 3.1.1 Multiple Coal Seam Production System -- 3.1.2 Mining Quota Allocation Scheme -- 3.1.3 Uncertain Condition -- 3.2 Modeling -- 3.2.1 Motivation for Employing Uncertain Variables -- 3.2.2 Typical Fuzzy Variables in the Proposed Method -- 3.2.3 Assumptions and Notations -- 3.2.3.1 Assumptions -- 3.2.3.2 Notations -- 3.2.4 Lower Level Decision‐Making Model -- 3.2.4.1 Objective Function -- 3.2.4.2 Constraints -- 3.2.5 Upper Level Decision Making Model -- 3.2.5.1 Objective -- 3.2.5.2 Constraints -- 3.2.6 Global Optimization Model -- 3.3 Solution Approach -- 3.3.1 Parameters Defuzzification -- 3.3.2 KKT Condition Transformation -- 3.4 Case Study -- 3.4.1 Presentation of Case Problem -- 3.4.2 Data Collection -- 3.4.3 Results for Different Scenarios -- 3.4.3.1 Scenario 1: Water Quality Standards I -- 3.4.3.2 Scenario 2: Water Quality Standards II -- 3.5 Discussion.
3.5.1 Propositions and Analysis -- 3.5.2 Management Recommendations -- References -- Chapter 4 Seasonal Changes‐Oriented Dynamic Strategy Toward Coal-Water Conflict Resolutions -- 4.1 Background Expression -- 4.2 Methodology -- 4.2.1 Key Problem Statement -- 4.2.2 Modeling -- 4.2.2.1 Assumption -- 4.2.2.2 Notations -- 4.2.2.3 Logical Representation for the Collieries -- 4.2.2.4 Logical Representation for the Authority -- 4.2.2.5 Global Optimization Model for the EP‐MQC -- 4.2.3 Model Transformation -- 4.3 Case Study -- 4.3.1 Presentation of the Case Region -- 4.3.2 Data Collection -- 4.3.3 Results Under Different Situations -- 4.4 Discussion -- 4.4.1 Propositions and Analysis -- 4.4.2 Policy Recommendations -- References -- Chapter 5 GIS‐Oriented Equilibrium Strategy Toward Coal Gangue Contamination Mitigating -- 5.1 Review of Background -- 5.2 Key Problem Statement -- 5.3 Coal Gangue Facility Siting Method -- 5.3.1 Identifying Candidate Sites Using GIS Technique -- 5.3.2 Selecting the Optimal Site Using the Modeling Technique -- 5.3.2.1 Assumptions -- 5.3.2.2 Notations -- 5.3.2.3 Model Formulation -- 5.3.3 Model Transformation -- 5.4 Case Study -- 5.4.1 Case Region Presentation -- 5.4.2 GIS Technique -- 5.4.3 Modeling Technique -- 5.4.4 Data Collection -- 5.4.5 Computational Results and Analysis -- 5.4.5.1 Scenario 1: α& -- equals -- 1.0 -- 5.4.5.2 Scenario 2: α& -- equals -- 0.9 -- 5.4.5.3 Scenario 3: α& -- equals -- 0.8 -- 5.4.5.4 Scenario 4: α& -- equals -- 0.7 -- 5.4.5.5 Scenario 5: α& -- equals -- 0.6 -- 5.5 Discussion -- 5.5.1 Propositions -- 5.5.2 Management Recommendations -- References -- Chapter 6 Dynamic Investment Strategy Toward Emissions Reduction and Energy Conservation of Coal Mining -- 6.1 Background Review -- 6.1.1 Multi‐system Consideration of Emission and Energy.
6.1.2 Multidimensional Consideration of Economic and Ecological Benefits -- 6.1.3 Multi‐stage Consideration of Environmental Investment -- 6.2 Modeling -- 6.2.1 Assumptions -- 6.2.2 Notations -- 6.2.3 Colliery Economic Benefit: Profit Objective -- 6.2.4 Colliery Ecological Benefit: Emission Reduction and Energy Conservation -- 6.2.5 Coal Production and Environmental Investment Activities -- 6.2.6 State Process Control Colliery Operations -- 6.2.7 Ecological Coal Mining Economic‐Ecological Equilibrium Model -- 6.3 Economic‐Ecological Equilibrium Model Solution Approach -- 6.3.1 General Parameterization -- 6.3.2 Fuzzy Goals for the Multiobjective Model -- 6.3.3 Standard and AM‐Based PSO for Nonlinear Dynamic Model -- 6.4 Case Study -- 6.4.1 Case Description -- 6.4.2 Parametrization -- 6.4.3 Data Collection -- 6.4.4 Results and Different Scenarios -- 6.4.4.1 Results Analysis -- 6.4.4.2 Sensitivity Analysis -- 6.5 Discussion and Analysis -- 6.5.1 Comprehensive Discussion for Results -- 6.5.2 Management Implications -- References -- Chapter 7 Carbon Dioxide Emissions Reduction‐Oriented Integrated Coal‐Fired Power Operation Method -- 7.1 Background Review -- 7.2 Key Problem Statement -- 7.3 Modeling -- 7.3.1 Assumptions -- 7.3.2 ICPBD Strategy Intentions -- 7.3.2.1 Maximizing Economic Benefit -- 7.3.2.2 Minimizing CO2 Emissions -- 7.3.3 ICPBD Strategy Limitations -- 7.3.3.1 Coal Purchase Phase Restriction -- 7.3.3.2 Coal Storage Phase Restrictions -- 7.3.3.3 Coal Blending Phase Restrictions -- 7.3.3.4 Coal Distribution Phase Restrictions -- 7.3.4 Global Model -- 7.4 Case Study -- 7.4.1 Presentation of Case Region -- 7.4.2 Model Transformation -- 7.4.3 Data Collection -- 7.5 Results and Discussion -- 7.5.1 Results for Different Scenarios -- 7.5.2 Propositions and Analysis -- 7.5.3 Management Recommendations -- References.
Chapter 8 Equilibrium Coal Blending Method Toward Multiple Air Pollution Reduction -- 8.1 Background Presentation -- 8.1.1 Relationship Among All the Stakeholders -- 8.1.2 Decision Carrier Between All the Stakeholders -- 8.1.3 Modeling -- 8.1.3.1 Notations -- 8.1.3.2 Objectives of the Authority -- 8.1.3.3 Constrains of the Authority -- 8.1.3.4 Objectives of the CPPs -- 8.1.3.5 Constraints of the CPPs -- 8.1.3.6 Global Optimization Model -- 8.2 Case Study -- 8.2.1 Presentation of the Case Region -- 8.2.2 Model Transformation and Solution Approach -- 8.2.3 Data Collection -- 8.3 Results and Discussion -- 8.3.1 Results Under Different Scenarios -- 8.3.2 Propositions and Analysis -- 8.3.3 Management Recommendations -- References -- Chapter 9 Equilibrium Biomass-Coal Blending Method Toward Carbon Emissions Reduction -- 9.1 Background Review -- 9.2 Key Problem Statement -- 9.3 Modeling -- 9.3.1 Assumption -- 9.3.2 Notations -- 9.3.3 Model for the Local Authority -- 9.3.3.1 Objective 1: Maximizing Financial Revenue -- 9.3.3.2 Objective 2: Minimizing Carbon Emissions -- 9.3.3.3 Limitation on the CPPs' Operations -- 9.3.3.4 Power Supply Demand Restriction -- 9.3.3.5 Limitation on the Different Between the Quota and the Actual Emission -- 9.3.4 Model for CPPs -- 9.3.4.1 Objective: Maximizing Economic Benefits -- 9.3.4.2 Combustion Efficiency Constraint -- 9.3.4.3 Limitations on Fuel Quantities and Qualities -- 9.3.4.4 Technical Constraint -- 9.3.4.5 Social Responsibility Limitation -- 9.3.4.6 Carbon Emissions Quota Constraint -- 9.3.4.7 Fuel Resources Storage Limitation -- 9.3.5 Global Model -- 9.4 Case Study -- 9.4.1 Case Description -- 9.4.2 Model Transformation and Solution Approach -- 9.4.3 Data Collection -- 9.5 Results and Discussion -- 9.5.1 Results Under Different Scenarios -- 9.5.2 Propositions and Analyses -- 9.5.3 Policy Implications -- References.
Chapter 10 Carbon Emission Reduction‐Oriented Equilibrium Strategy for Thermal-Hydro-Wind Generation System -- 10.1 Background Introduction -- 10.2 Modeling -- 10.2.1 Notations -- 10.2.2 Objectives -- 10.2.2.1 Carbon Emissions Reduction -- 10.2.2.2 Water Resources Wastes -- 10.2.2.3 Wind Power Utilization -- 10.2.2.4 Power Supply Balance -- 10.2.3 Constraint -- 10.2.3.1 Constraints of Wind Power -- 10.2.3.2 Constraints of Coal‐Combusted Power Plants -- 10.2.3.3 Constraint of Hydropower Station -- 10.2.3.4 Constraints of Hybrid Generation System -- 10.2.3.5 Global Model -- 10.3 Case Study -- 10.3.1 Case Description -- 10.3.2 Model Transformation -- 10.4 Data Collection -- 10.5 Result and Discussion -- 10.5.1 Result Under Different Scenarios -- 10.5.2 Comprehensive Discussion of Results -- 10.5.3 Management Recommendations -- References -- Chapter 11 Economic‐Environmental Equilibrium‐Based Wind-Solar-Thermal Power Generation System -- 11.1 Background Introduction -- 11.2 Key Problem Statement -- 11.3 Modeling -- 11.3.1 Notations -- 11.3.2 Objectives -- 11.3.2.1 Economic Profits -- 11.3.2.2 Carbon Emissions -- 11.3.2.3 Renewable Energy Utilization -- 11.3.3 Constraints -- 11.3.3.1 Constraints of Hybrid System -- 11.3.3.2 Constraints of Thermal Power Plant -- 11.3.3.3 Constraints of Wind Power Plant -- 11.3.3.4 Constraints of Solar Power Plant -- 11.3.4 Global Model -- 11.4 Case Study -- 11.4.1 Case Description -- 11.4.2 Model Transformation -- 11.4.3 Data Collection -- 11.4.4 Results and Analysis -- 11.5 Discussion -- 11.5.1 Propositions and Analysis -- 11.5.2 Management Recommendations -- References -- Chapter 12 Carbon Emissions Reductions‐Oriented Equilibrium Strategy for Municipal Solid Waste with Coal Co‐combustion -- 12.1 Background Introduction -- 12.2 Key Problem Statement -- 12.2.1 Conflict and Cooperation Between the Decision‐Makers.
12.2.2 Trade‐Off Between the Economy and the Environment.
Record Nr. UNINA-9910555093603321
Xie Heping  
Weinheim, Germany : , : Wiley-VCH, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Innovative approaches towards ecological coal mining and utilization / / Heping Xie, Chengwei Lv, Jiuping Xu
Innovative approaches towards ecological coal mining and utilization / / Heping Xie, Chengwei Lv, Jiuping Xu
Autore Xie Heping
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH, , [2022]
Descrizione fisica 1 online resource (381 pages)
Disciplina 363.738746
Soggetto topico Clean coal technologies
Coal - Environmental aspects
Coal mines and mining - Environmental aspects
ISBN 3-527-82512-6
3-527-82511-8
3-527-82510-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Preface -- Acknowledgments -- Chapter 1 Technical Developing Pathway of Ecological Coal Mining -- 1.1 Background Introduction -- 1.2 Coal Mining Technology Development -- 1.2.1 Literature Analyses -- 1.2.1.1 Data Analysis System -- 1.2.1.2 Knowledge Diagram -- 1.2.2 Three Periods of Coal Mining Technology -- 1.2.2.1 Competition Phase -- 1.2.2.2 Diffusion Phase -- 1.2.2.3 Shift Phase -- 1.3 Discussion -- References -- Chapter 2 Developing Trending Toward Ecological Coal Utilization -- 2.1 Background Introduction -- 2.2 Coal Utilization Evolution -- 2.2.1 Initial Technological Competition -- 2.2.2 Fierce Innovative Diffusion -- 2.3 Coal Utilization Development Trends -- 2.3.1 Disruptive Integrated Shift -- 2.3.2 No‐Coal‐on‐Ground Integrated Energy System -- 2.4 Discussion -- References -- Chapter 3 Multiple Coal Seam Coproduction‐Oriented Equilibrium Approach Toward Coal-Water Conflict -- 3.1 Background Review -- 3.1.1 Multiple Coal Seam Production System -- 3.1.2 Mining Quota Allocation Scheme -- 3.1.3 Uncertain Condition -- 3.2 Modeling -- 3.2.1 Motivation for Employing Uncertain Variables -- 3.2.2 Typical Fuzzy Variables in the Proposed Method -- 3.2.3 Assumptions and Notations -- 3.2.3.1 Assumptions -- 3.2.3.2 Notations -- 3.2.4 Lower Level Decision‐Making Model -- 3.2.4.1 Objective Function -- 3.2.4.2 Constraints -- 3.2.5 Upper Level Decision Making Model -- 3.2.5.1 Objective -- 3.2.5.2 Constraints -- 3.2.6 Global Optimization Model -- 3.3 Solution Approach -- 3.3.1 Parameters Defuzzification -- 3.3.2 KKT Condition Transformation -- 3.4 Case Study -- 3.4.1 Presentation of Case Problem -- 3.4.2 Data Collection -- 3.4.3 Results for Different Scenarios -- 3.4.3.1 Scenario 1: Water Quality Standards I -- 3.4.3.2 Scenario 2: Water Quality Standards II -- 3.5 Discussion.
3.5.1 Propositions and Analysis -- 3.5.2 Management Recommendations -- References -- Chapter 4 Seasonal Changes‐Oriented Dynamic Strategy Toward Coal-Water Conflict Resolutions -- 4.1 Background Expression -- 4.2 Methodology -- 4.2.1 Key Problem Statement -- 4.2.2 Modeling -- 4.2.2.1 Assumption -- 4.2.2.2 Notations -- 4.2.2.3 Logical Representation for the Collieries -- 4.2.2.4 Logical Representation for the Authority -- 4.2.2.5 Global Optimization Model for the EP‐MQC -- 4.2.3 Model Transformation -- 4.3 Case Study -- 4.3.1 Presentation of the Case Region -- 4.3.2 Data Collection -- 4.3.3 Results Under Different Situations -- 4.4 Discussion -- 4.4.1 Propositions and Analysis -- 4.4.2 Policy Recommendations -- References -- Chapter 5 GIS‐Oriented Equilibrium Strategy Toward Coal Gangue Contamination Mitigating -- 5.1 Review of Background -- 5.2 Key Problem Statement -- 5.3 Coal Gangue Facility Siting Method -- 5.3.1 Identifying Candidate Sites Using GIS Technique -- 5.3.2 Selecting the Optimal Site Using the Modeling Technique -- 5.3.2.1 Assumptions -- 5.3.2.2 Notations -- 5.3.2.3 Model Formulation -- 5.3.3 Model Transformation -- 5.4 Case Study -- 5.4.1 Case Region Presentation -- 5.4.2 GIS Technique -- 5.4.3 Modeling Technique -- 5.4.4 Data Collection -- 5.4.5 Computational Results and Analysis -- 5.4.5.1 Scenario 1: α& -- equals -- 1.0 -- 5.4.5.2 Scenario 2: α& -- equals -- 0.9 -- 5.4.5.3 Scenario 3: α& -- equals -- 0.8 -- 5.4.5.4 Scenario 4: α& -- equals -- 0.7 -- 5.4.5.5 Scenario 5: α& -- equals -- 0.6 -- 5.5 Discussion -- 5.5.1 Propositions -- 5.5.2 Management Recommendations -- References -- Chapter 6 Dynamic Investment Strategy Toward Emissions Reduction and Energy Conservation of Coal Mining -- 6.1 Background Review -- 6.1.1 Multi‐system Consideration of Emission and Energy.
6.1.2 Multidimensional Consideration of Economic and Ecological Benefits -- 6.1.3 Multi‐stage Consideration of Environmental Investment -- 6.2 Modeling -- 6.2.1 Assumptions -- 6.2.2 Notations -- 6.2.3 Colliery Economic Benefit: Profit Objective -- 6.2.4 Colliery Ecological Benefit: Emission Reduction and Energy Conservation -- 6.2.5 Coal Production and Environmental Investment Activities -- 6.2.6 State Process Control Colliery Operations -- 6.2.7 Ecological Coal Mining Economic‐Ecological Equilibrium Model -- 6.3 Economic‐Ecological Equilibrium Model Solution Approach -- 6.3.1 General Parameterization -- 6.3.2 Fuzzy Goals for the Multiobjective Model -- 6.3.3 Standard and AM‐Based PSO for Nonlinear Dynamic Model -- 6.4 Case Study -- 6.4.1 Case Description -- 6.4.2 Parametrization -- 6.4.3 Data Collection -- 6.4.4 Results and Different Scenarios -- 6.4.4.1 Results Analysis -- 6.4.4.2 Sensitivity Analysis -- 6.5 Discussion and Analysis -- 6.5.1 Comprehensive Discussion for Results -- 6.5.2 Management Implications -- References -- Chapter 7 Carbon Dioxide Emissions Reduction‐Oriented Integrated Coal‐Fired Power Operation Method -- 7.1 Background Review -- 7.2 Key Problem Statement -- 7.3 Modeling -- 7.3.1 Assumptions -- 7.3.2 ICPBD Strategy Intentions -- 7.3.2.1 Maximizing Economic Benefit -- 7.3.2.2 Minimizing CO2 Emissions -- 7.3.3 ICPBD Strategy Limitations -- 7.3.3.1 Coal Purchase Phase Restriction -- 7.3.3.2 Coal Storage Phase Restrictions -- 7.3.3.3 Coal Blending Phase Restrictions -- 7.3.3.4 Coal Distribution Phase Restrictions -- 7.3.4 Global Model -- 7.4 Case Study -- 7.4.1 Presentation of Case Region -- 7.4.2 Model Transformation -- 7.4.3 Data Collection -- 7.5 Results and Discussion -- 7.5.1 Results for Different Scenarios -- 7.5.2 Propositions and Analysis -- 7.5.3 Management Recommendations -- References.
Chapter 8 Equilibrium Coal Blending Method Toward Multiple Air Pollution Reduction -- 8.1 Background Presentation -- 8.1.1 Relationship Among All the Stakeholders -- 8.1.2 Decision Carrier Between All the Stakeholders -- 8.1.3 Modeling -- 8.1.3.1 Notations -- 8.1.3.2 Objectives of the Authority -- 8.1.3.3 Constrains of the Authority -- 8.1.3.4 Objectives of the CPPs -- 8.1.3.5 Constraints of the CPPs -- 8.1.3.6 Global Optimization Model -- 8.2 Case Study -- 8.2.1 Presentation of the Case Region -- 8.2.2 Model Transformation and Solution Approach -- 8.2.3 Data Collection -- 8.3 Results and Discussion -- 8.3.1 Results Under Different Scenarios -- 8.3.2 Propositions and Analysis -- 8.3.3 Management Recommendations -- References -- Chapter 9 Equilibrium Biomass-Coal Blending Method Toward Carbon Emissions Reduction -- 9.1 Background Review -- 9.2 Key Problem Statement -- 9.3 Modeling -- 9.3.1 Assumption -- 9.3.2 Notations -- 9.3.3 Model for the Local Authority -- 9.3.3.1 Objective 1: Maximizing Financial Revenue -- 9.3.3.2 Objective 2: Minimizing Carbon Emissions -- 9.3.3.3 Limitation on the CPPs' Operations -- 9.3.3.4 Power Supply Demand Restriction -- 9.3.3.5 Limitation on the Different Between the Quota and the Actual Emission -- 9.3.4 Model for CPPs -- 9.3.4.1 Objective: Maximizing Economic Benefits -- 9.3.4.2 Combustion Efficiency Constraint -- 9.3.4.3 Limitations on Fuel Quantities and Qualities -- 9.3.4.4 Technical Constraint -- 9.3.4.5 Social Responsibility Limitation -- 9.3.4.6 Carbon Emissions Quota Constraint -- 9.3.4.7 Fuel Resources Storage Limitation -- 9.3.5 Global Model -- 9.4 Case Study -- 9.4.1 Case Description -- 9.4.2 Model Transformation and Solution Approach -- 9.4.3 Data Collection -- 9.5 Results and Discussion -- 9.5.1 Results Under Different Scenarios -- 9.5.2 Propositions and Analyses -- 9.5.3 Policy Implications -- References.
Chapter 10 Carbon Emission Reduction‐Oriented Equilibrium Strategy for Thermal-Hydro-Wind Generation System -- 10.1 Background Introduction -- 10.2 Modeling -- 10.2.1 Notations -- 10.2.2 Objectives -- 10.2.2.1 Carbon Emissions Reduction -- 10.2.2.2 Water Resources Wastes -- 10.2.2.3 Wind Power Utilization -- 10.2.2.4 Power Supply Balance -- 10.2.3 Constraint -- 10.2.3.1 Constraints of Wind Power -- 10.2.3.2 Constraints of Coal‐Combusted Power Plants -- 10.2.3.3 Constraint of Hydropower Station -- 10.2.3.4 Constraints of Hybrid Generation System -- 10.2.3.5 Global Model -- 10.3 Case Study -- 10.3.1 Case Description -- 10.3.2 Model Transformation -- 10.4 Data Collection -- 10.5 Result and Discussion -- 10.5.1 Result Under Different Scenarios -- 10.5.2 Comprehensive Discussion of Results -- 10.5.3 Management Recommendations -- References -- Chapter 11 Economic‐Environmental Equilibrium‐Based Wind-Solar-Thermal Power Generation System -- 11.1 Background Introduction -- 11.2 Key Problem Statement -- 11.3 Modeling -- 11.3.1 Notations -- 11.3.2 Objectives -- 11.3.2.1 Economic Profits -- 11.3.2.2 Carbon Emissions -- 11.3.2.3 Renewable Energy Utilization -- 11.3.3 Constraints -- 11.3.3.1 Constraints of Hybrid System -- 11.3.3.2 Constraints of Thermal Power Plant -- 11.3.3.3 Constraints of Wind Power Plant -- 11.3.3.4 Constraints of Solar Power Plant -- 11.3.4 Global Model -- 11.4 Case Study -- 11.4.1 Case Description -- 11.4.2 Model Transformation -- 11.4.3 Data Collection -- 11.4.4 Results and Analysis -- 11.5 Discussion -- 11.5.1 Propositions and Analysis -- 11.5.2 Management Recommendations -- References -- Chapter 12 Carbon Emissions Reductions‐Oriented Equilibrium Strategy for Municipal Solid Waste with Coal Co‐combustion -- 12.1 Background Introduction -- 12.2 Key Problem Statement -- 12.2.1 Conflict and Cooperation Between the Decision‐Makers.
12.2.2 Trade‐Off Between the Economy and the Environment.
Record Nr. UNINA-9910830432203321
Xie Heping  
Weinheim, Germany : , : Wiley-VCH, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Proceedings of the sixth International Conference on Management Science and Engineering Management : focused on electrical and information technology / / Jiuping Xu, Masoom Yasinzai, Benjamin Lev, editors
Proceedings of the sixth International Conference on Management Science and Engineering Management : focused on electrical and information technology / / Jiuping Xu, Masoom Yasinzai, Benjamin Lev, editors
Edizione [1st ed. 2013.]
Pubbl/distr/stampa London ; ; New York, : Springer, c2013
Descrizione fisica 1 online resource (1029 p.)
Disciplina 620.0068
658
Altri autori (Persone) XuJiuping (Professor of management science)
YasinzaiMasoom
LevBenjamin
Collana Lecture notes in electrical engineering
Soggetto topico Engineering - Management
Management science
ISBN 1-283-91246-5
1-4471-4600-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Proceedings of the Sixth International Conferenceon Management Science and Engineering Management; Preface; Contents; Organization; 1 Advancements of Engineering Management based on Electrical and Information Technology for The Sixth ICMSEM; 1.1 Overview of the Previous Five ICMSEMs; 1.2 Key Issues of the Sixth ICMSEM; 1.3 Development Trends for EMEI based on the First Six ICMSEMs; 1.3.1 Identification Procedure; 1.3.2 Survey of ICMSEM papers; 1.3.3 Evaluation of the First Six ICMSEMs; 1.4 Novel EMEI Research Ideas: Computer-based Research Paradigms
1.5 Appreciations for the Sixth ICMSEM and Prospects for the Seventh ICMSEMReferences; Part I Computer and Networks; 2 Recurrent Neural Network and Genetic Algorithm Approaches for a Dual Route Optimization Problem: A Real Case Study; 2.1 Introduction; 2.2 Case Study; 2.2.1 Background; 2.2.2 Principal and Capillary Routes; 2.3 Dual Problem Formulation; 2.3.1 Travelling salesman problem (TSP) approach for the primary distribution; 2.4 Recurrent Neural Network and Genetic Algorithm Approaches (RNNGA); 2.5 Results; 2.6 Conclusions; References
3 Influence Factors Theoretical Model of Agribusiness Brand Marketing Strategy3.1 Introduction; 3.2 Related Theory and Brand Marketing Strategy; 3.3 Influence Factors of Agribusiness Brand Marketing Strategy; 3.3.1 Dynamic Capability; 3.3.2 Market Orientation; 3.4 Analysis on Function Mechanism of Influence Factors of Agribusiness Brand Marketing Strategy; 3.4.1 Dynamic Capability of Agribusiness; 3.4.2 Market Orientation of Agribusiness; 3.4.3 Brand Marketing Strategy of Agribusiness; 3.5 The Impact of Market Orientation and Dynamic Capability of Agribusiness on Brand Image Strategy
3.6 The Impact of Market Orientation and Dynamic Capability of Agribusiness on Brand Location Strategy3.7 The Impact of Market Orientation and Dynamic Capability of Agribusiness on Brand Extension Strategy; 3.8 The Impact of Market Orientation and Dynamic Capability of Agribusiness on Brand Relation Strategy; 3.9 The Theoretical Model of Brand Marketing Strategy Influencing Factors of Agribusiness; 3.10 Large Sample Analysis; 3.10.1 Measurement of Variables; 3.10.2 Design, Issuring and Taking-back of Questionnaire; 3.10.3 Descriptive Statistics of Large Samples; 3.10.4 Correlation Analysis
3.10.5 Factor Analysis3.10.6 Path Analysis; 3.11 Conclusions; References; 4 Determining OilWell Debit Using Oulet Temperature Information Processing; 4.1 Introduction; 4.2 Problem Formulation; 4.3 Problem Solution; 4.4 Conclusion; References; 5 The Establishment of Rough-ANN Model for Dynamic Risk Measure of Enterprise Technological Innovation and Its Application; 5.1 Introduction; 5.2 Indicator System of Enterprises' Technological Innovation Risk Factors; 5.3 Rough-ANN Model for Dynamic Risk Measure; 5.3.1 Overview of Rough Set Knowledge Reduction Method
5.3.2 Overview of Artificial Neural Network Theory
Record Nr. UNINA-9910437772603321
London ; ; New York, : Springer, c2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui