Integrated nanophotonics : platforms, devices, and applications / / edited by Peng Yu, Hongxing Xu, and Zhiming Wang |
Pubbl/distr/stampa | Weinheim, Germany : , : Wiley-VCH GmbH, , [2023] |
Descrizione fisica | 1 online resource (379 pages) |
Disciplina | 621.365 |
Soggetto topico | Nanophotonics |
ISBN |
3-527-83303-X
3-527-83302-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910830224603321 |
Weinheim, Germany : , : Wiley-VCH GmbH, , [2023] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Plasmon-enhanced light-matter interactions / / edited by Peng Yu, Hongxing Xu, and Zhiming M. Wang |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2022] |
Descrizione fisica | 1 online resource (348 pages) ; : (VIII, 347 p. 148 illus., 135 illus. in color) |
Disciplina | 530.416 |
Collana | Lecture Notes in Nanoscale Science and Technology |
Soggetto topico |
Nanotechnology
Optical materials Surface plasmon resonance |
ISBN | 3-030-87544-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- References -- Contents -- Chiral Plasmonics -- 1 Chiral -- 2 Near-Field Chiral -- 3 Far-Field Light-Matter Interactions -- 3.1 Circular Birefringence (CB) -- 3.2 Asymmetric Transmission -- 3.3 Circular Dichroism (CD) -- 4 Sensor -- 5 Outlook -- References -- Epsilon-Near-Zero Plasmonics -- 1 Introduction -- 2 Fundamental Concepts -- 2.1 Plasmonics -- 2.2 Epsilon-Near-Zero Media -- 3 Material Platforms for ENZ Media -- 4 Linear and Nonlinear Optical Phenomena in ENZ Plasmonics -- 4.1 Linear Case -- 4.2 Nonlinear Case -- 5 Concluding Remarks -- References -- Epsilon-Near-Zero Plasmonic Waveguides for Enhanced Coherent Optical Effects -- 1 Introduction to Epsilon-Near-Zero (ENZ) Plasmonic Waveguides -- 2 Tunable Nonlinear Coherent Perfect Absorption (CPA) Based on Passive ENZ Plasmonic Waveguides -- 2.1 Linear CPA by ENZ Plasmonic Waveguides -- 2.2 Tunable CPA by Nonlinear ENZ Plasmonic Waveguides -- 3 Exceptional Points and Spectral Singularities by Active ENZ Plasmonic Waveguides -- 3.1 Numerical Modeling of Active ENZ Waveguides -- 3.2 Theoretical Analysis of Active ENZ Waveguides -- 3.3 Applications of Active ENZ Plasmonic Waveguides -- 4 Conclusions -- References -- Topological Insulator Plasmonics and Enhanced Light-Matter Interactions -- 1 Introduction -- 2 Fabrications and Optical Constants of Topological Insulators -- 2.1 Fabrications of Topological Insulators -- 2.2 Optical Constants of Topological Insulators -- 3 Plasmonic Behaviors of Topological Insulators -- 3.1 Dirac Plasmons -- 3.2 Surface Plasmon Resonances -- 3.3 Localized Plasmon Resonances -- 3.4 Magnetic Plasmon Resonances -- 4 Plasmon-Enhanced Light-Matter Interactions -- 4.1 Refractive Index Monitoring -- 4.2 Enhanced Photoluminescence Emission -- 4.3 Enhanced Light Harvesting -- 5 Conclusions -- References -- Advanced Applications of Nonlinear Plasmonics.
1 Introduction -- 2 Broadband THz Generation from Nonlinear Metasurfaces -- 3 Nonlinear Fano Resonances and Plasmonic BICs -- 4 Nonlinear Interaction of Topological Graphene Plasmons -- 5 Conclusion -- References -- Evolutionary Algorithms for Molding with Bezier Curves: A Novel Way to Obtain Optimized Structures at Nanoscale -- 1 Introduction -- 2 Use of Bezier Curves in Nanostructures -- 3 Application of Evolutionary Algorithms in the Optimization of Nanostructures -- References -- Plasmon-Induced Hot Electrons in Metallic Nanoparticles -- 1 Introduction -- 2 Plasmon-Induced Hot Electrons -- 2.1 Hot-Electron Generation and Relaxation -- 2.2 Size and Shape Effect of Nanostructure -- 2.3 Direct and Indirect Electron Transfer -- 3 Hot-Electron-Driven Catalysis -- 3.1 Catalysis Mediated by Indirect Electron Transfer -- 3.2 Catalysis Mediated by Direct Electron Transfer -- 4 Hot-Electron-Induced Nonlinearity -- 5 Summary -- References -- Plasmon-Enhanced Optical Forces and Tweezers -- 1 Introduction -- 2 Optical Forces and Torque -- 2.1 Maxwell's Stress Tensor -- 2.2 Dipole Approximation Regime -- 2.3 Optical Torque -- 2.4 Additional Forces on Dielectric Particles -- 3 From Conventional to Plasmonic Tweezers -- 4 Optical Manipulation Using Plasmonic Nanostructures -- 5 Applications of Plasmonic Optical Trapping in Life Sciences -- 6 Optothermal Plasmonic Optical Tweezers -- 7 Future Perspectives -- References -- Plasmon-Enhanced Optical Tweezing Systems: Fundamental and Applications -- 1 Introduction -- 2 Theoretical Aspects of Plasmonic Tweezers -- 3 Types of Plasmonic Tweezers -- 3.1 First Generation -- 3.2 Second Generation -- 4 Applications of Plasmonic Tweezers -- 4.1 Cell Biology -- 4.1.1 Cellular Adhesion Forces -- 4.1.2 Adhesion and Structure of Bacterial Pili -- 4.1.3 Directed Neuronal Growth -- 4.2 Spectroscopy. 4.2.1 Absorption and Photoluminescence Spectroscopy -- 4.2.2 Raman Spectroscopy -- 4.3 Optofluidics and Lab-on-a-Chip -- 4.3.1 Optical Sorting -- 4.3.2 Monolithic Integration -- 4.4 Trapping of Atoms -- 4.5 Microchemistry -- 4.5.1 Liquid Droplets -- 4.5.2 Vesicle and Membrane Manipulation -- 4.5.3 Vesicle Fusion -- 4.6 Aerosol Science -- 5 Conclusion -- References -- Plasmon-Enhanced Optothermal Manipulation -- 1 Introduction -- 2 Plasmonic Photothermal Effect -- 3 Opto-Thermophoretic Manipulation -- 3.1 Mechanism -- 3.2 Techniques and Applications -- 4 Opto-Thermoelectric Manipulation -- 4.1 Mechanism -- 4.2 Techniques and Applications -- 5 Thermo-plasmonic Convection-Assisted Manipulation -- 5.1 Mechanism -- 5.2 Techniques and Applications -- 6 Marangoni Convection-Assisted Manipulation -- 6.1 Mechanism -- 6.2 Techniques and Applications -- 7 Electrothermoplasmonic Flow-Assisted Manipulation -- 7.1 Mechanism -- 7.2 Techniques and Applications -- 8 Conclusion -- References -- Quantum Optomagnetic Plasmonic Nanocircuits -- 1 Introduction -- 2 Background: Towards Functional Plasmonic Nanocircuitry -- 3 Optimization of the Lithographic Plasmonic Nanowires -- 3.1 Enhancing the Plasmon Propagation Length -- 3.2 Efficient Excitation of the Surface Plasmon Polaritons -- 4 Highly Efficient Lithographic Plasmonic Nanowires -- 5 Effect of Coupling to Nanoemitters -- 6 Surface Plasmon Detected Magnetic Resonance -- 7 Optomagnetic Plasmonic Circuitry -- 8 Conclusions -- References -- Recent Advances and Opportunities of Plasmonic Sensors -- 1 Preamble on Plasmonic Sensor -- 2 Introduction on Plasmonic Materials -- 2.1 Conventional Plasmonic Materials -- 2.2 Hybrid Plasmonic Nanomaterials -- 2.3 Nanocomposite Plasmonic Materials -- 3 Synthesis of Plasmonic Materials -- 4 Sensing Performances of Plasmonic Sensors -- 5 Future Scopes of Plasmonic -- 6 Summary. References -- Index. |
Record Nr. | UNISA-996466841603316 |
Cham, Switzerland : , : Springer, , [2022] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Plasmon-enhanced light-matter interactions / / edited by Peng Yu, Hongxing Xu, and Zhiming M. Wang |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2022] |
Descrizione fisica | 1 online resource (348 pages) ; : (VIII, 347 p. 148 illus., 135 illus. in color) |
Disciplina | 530.416 |
Collana | Lecture Notes in Nanoscale Science and Technology |
Soggetto topico |
Nanotechnology
Optical materials Surface plasmon resonance |
ISBN | 3-030-87544-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- References -- Contents -- Chiral Plasmonics -- 1 Chiral -- 2 Near-Field Chiral -- 3 Far-Field Light-Matter Interactions -- 3.1 Circular Birefringence (CB) -- 3.2 Asymmetric Transmission -- 3.3 Circular Dichroism (CD) -- 4 Sensor -- 5 Outlook -- References -- Epsilon-Near-Zero Plasmonics -- 1 Introduction -- 2 Fundamental Concepts -- 2.1 Plasmonics -- 2.2 Epsilon-Near-Zero Media -- 3 Material Platforms for ENZ Media -- 4 Linear and Nonlinear Optical Phenomena in ENZ Plasmonics -- 4.1 Linear Case -- 4.2 Nonlinear Case -- 5 Concluding Remarks -- References -- Epsilon-Near-Zero Plasmonic Waveguides for Enhanced Coherent Optical Effects -- 1 Introduction to Epsilon-Near-Zero (ENZ) Plasmonic Waveguides -- 2 Tunable Nonlinear Coherent Perfect Absorption (CPA) Based on Passive ENZ Plasmonic Waveguides -- 2.1 Linear CPA by ENZ Plasmonic Waveguides -- 2.2 Tunable CPA by Nonlinear ENZ Plasmonic Waveguides -- 3 Exceptional Points and Spectral Singularities by Active ENZ Plasmonic Waveguides -- 3.1 Numerical Modeling of Active ENZ Waveguides -- 3.2 Theoretical Analysis of Active ENZ Waveguides -- 3.3 Applications of Active ENZ Plasmonic Waveguides -- 4 Conclusions -- References -- Topological Insulator Plasmonics and Enhanced Light-Matter Interactions -- 1 Introduction -- 2 Fabrications and Optical Constants of Topological Insulators -- 2.1 Fabrications of Topological Insulators -- 2.2 Optical Constants of Topological Insulators -- 3 Plasmonic Behaviors of Topological Insulators -- 3.1 Dirac Plasmons -- 3.2 Surface Plasmon Resonances -- 3.3 Localized Plasmon Resonances -- 3.4 Magnetic Plasmon Resonances -- 4 Plasmon-Enhanced Light-Matter Interactions -- 4.1 Refractive Index Monitoring -- 4.2 Enhanced Photoluminescence Emission -- 4.3 Enhanced Light Harvesting -- 5 Conclusions -- References -- Advanced Applications of Nonlinear Plasmonics.
1 Introduction -- 2 Broadband THz Generation from Nonlinear Metasurfaces -- 3 Nonlinear Fano Resonances and Plasmonic BICs -- 4 Nonlinear Interaction of Topological Graphene Plasmons -- 5 Conclusion -- References -- Evolutionary Algorithms for Molding with Bezier Curves: A Novel Way to Obtain Optimized Structures at Nanoscale -- 1 Introduction -- 2 Use of Bezier Curves in Nanostructures -- 3 Application of Evolutionary Algorithms in the Optimization of Nanostructures -- References -- Plasmon-Induced Hot Electrons in Metallic Nanoparticles -- 1 Introduction -- 2 Plasmon-Induced Hot Electrons -- 2.1 Hot-Electron Generation and Relaxation -- 2.2 Size and Shape Effect of Nanostructure -- 2.3 Direct and Indirect Electron Transfer -- 3 Hot-Electron-Driven Catalysis -- 3.1 Catalysis Mediated by Indirect Electron Transfer -- 3.2 Catalysis Mediated by Direct Electron Transfer -- 4 Hot-Electron-Induced Nonlinearity -- 5 Summary -- References -- Plasmon-Enhanced Optical Forces and Tweezers -- 1 Introduction -- 2 Optical Forces and Torque -- 2.1 Maxwell's Stress Tensor -- 2.2 Dipole Approximation Regime -- 2.3 Optical Torque -- 2.4 Additional Forces on Dielectric Particles -- 3 From Conventional to Plasmonic Tweezers -- 4 Optical Manipulation Using Plasmonic Nanostructures -- 5 Applications of Plasmonic Optical Trapping in Life Sciences -- 6 Optothermal Plasmonic Optical Tweezers -- 7 Future Perspectives -- References -- Plasmon-Enhanced Optical Tweezing Systems: Fundamental and Applications -- 1 Introduction -- 2 Theoretical Aspects of Plasmonic Tweezers -- 3 Types of Plasmonic Tweezers -- 3.1 First Generation -- 3.2 Second Generation -- 4 Applications of Plasmonic Tweezers -- 4.1 Cell Biology -- 4.1.1 Cellular Adhesion Forces -- 4.1.2 Adhesion and Structure of Bacterial Pili -- 4.1.3 Directed Neuronal Growth -- 4.2 Spectroscopy. 4.2.1 Absorption and Photoluminescence Spectroscopy -- 4.2.2 Raman Spectroscopy -- 4.3 Optofluidics and Lab-on-a-Chip -- 4.3.1 Optical Sorting -- 4.3.2 Monolithic Integration -- 4.4 Trapping of Atoms -- 4.5 Microchemistry -- 4.5.1 Liquid Droplets -- 4.5.2 Vesicle and Membrane Manipulation -- 4.5.3 Vesicle Fusion -- 4.6 Aerosol Science -- 5 Conclusion -- References -- Plasmon-Enhanced Optothermal Manipulation -- 1 Introduction -- 2 Plasmonic Photothermal Effect -- 3 Opto-Thermophoretic Manipulation -- 3.1 Mechanism -- 3.2 Techniques and Applications -- 4 Opto-Thermoelectric Manipulation -- 4.1 Mechanism -- 4.2 Techniques and Applications -- 5 Thermo-plasmonic Convection-Assisted Manipulation -- 5.1 Mechanism -- 5.2 Techniques and Applications -- 6 Marangoni Convection-Assisted Manipulation -- 6.1 Mechanism -- 6.2 Techniques and Applications -- 7 Electrothermoplasmonic Flow-Assisted Manipulation -- 7.1 Mechanism -- 7.2 Techniques and Applications -- 8 Conclusion -- References -- Quantum Optomagnetic Plasmonic Nanocircuits -- 1 Introduction -- 2 Background: Towards Functional Plasmonic Nanocircuitry -- 3 Optimization of the Lithographic Plasmonic Nanowires -- 3.1 Enhancing the Plasmon Propagation Length -- 3.2 Efficient Excitation of the Surface Plasmon Polaritons -- 4 Highly Efficient Lithographic Plasmonic Nanowires -- 5 Effect of Coupling to Nanoemitters -- 6 Surface Plasmon Detected Magnetic Resonance -- 7 Optomagnetic Plasmonic Circuitry -- 8 Conclusions -- References -- Recent Advances and Opportunities of Plasmonic Sensors -- 1 Preamble on Plasmonic Sensor -- 2 Introduction on Plasmonic Materials -- 2.1 Conventional Plasmonic Materials -- 2.2 Hybrid Plasmonic Nanomaterials -- 2.3 Nanocomposite Plasmonic Materials -- 3 Synthesis of Plasmonic Materials -- 4 Sensing Performances of Plasmonic Sensors -- 5 Future Scopes of Plasmonic -- 6 Summary. References -- Index. |
Record Nr. | UNINA-9910551837103321 |
Cham, Switzerland : , : Springer, , [2022] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|