top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Methane Activation and Utilization in the Petrochemical and Biofuel Industries
Methane Activation and Utilization in the Petrochemical and Biofuel Industries
Autore Song Hua
Pubbl/distr/stampa Cham : , : Springer International Publishing AG, , 2021
Descrizione fisica 1 online resource (264 pages)
Altri autori (Persone) JarvisJack
MengShijun
XuHao
LiZhaofei
LiWenping
Soggetto genere / forma Electronic books.
ISBN 9783030884246
9783030884239
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910508475303321
Song Hua  
Cham : , : Springer International Publishing AG, , 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Micro-Mesoporous Metallosilicates : Synthesis, Characterization, and Catalytic Applications
Micro-Mesoporous Metallosilicates : Synthesis, Characterization, and Catalytic Applications
Autore Wu Peng
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2024
Descrizione fisica 1 online resource (493 pages)
Altri autori (Persone) XuHao
ISBN 3-527-83938-0
3-527-83936-4
3-527-83937-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Synthesis of Titanosilicates -- 1.1 Introduction -- 1.2 Synthesis of Medium‐Pore Titanosilicates -- 1.2.1 TS‐1 Synthesis -- 1.2.2 Ti‐MWW Synthesis -- 1.2.3 TS‐2 Synthesis -- 1.2.4 Synthesis of Other Medium‐Pore Titanosilicates -- 1.3 Synthesis of Large‐Pore Titanosilicates -- 1.3.1 Ti‐Beta Synthesis -- 1.3.2 Ti‐MOR Synthesis -- 1.3.3 Ti‐MSE Synthesis -- 1.3.4 Synthesis of Other Large‐Pore Titanosilicates -- 1.4 Synthesis of Extra‐Large‐Pore Titanosilicates -- 1.5 Synthesis of Mesoporous Titanosilicates -- 1.6 Synthesis of ETSs -- 1.7 Conclusions -- References -- Chapter 2 Layered Heteroatom‐Containing Zeolites -- 2.1 Introduction -- 2.2 Traditional Layered Heteroatom‐Containing Zeolites -- 2.2.1 Heteroatom‐Containing MWW‐Type Layered Zeolites and Their Derivative Zeolitic Materials -- 2.2.2 Heteroatom‐Containing Layered Zeolites Built from fer‐Layers -- 2.3 Novel Layered Heteroatom‐Containing Zeolites -- 2.3.1 Heteroatom‐Containing MFI‐Type Layered Zeolites -- 2.3.2 Germanosilicate‐Derived Heteroatom‐Containing Zeolites -- 2.4 Conclusions -- Acknowledgments -- References -- Chapter 3 Synthesis and Catalytic Applications of Sn‐ and Zr‐Zeolites -- 3.1 Introduction -- 3.2 Synthesis of Sn‐ and Zr‐Zeolites -- 3.2.1 Bottom‐up Approaches -- 3.2.1.1 Hydrothermal Synthesis -- 3.2.1.2 Dry‐Gel Conversion Methods -- 3.2.1.3 Interzeolite Transformation -- 3.2.1.4 Structural Reconstruction Strategy -- 3.2.2 Top‐Down Approaches -- 3.2.2.1 Direct Metalation -- 3.2.2.2 Demetallation-Metalation -- 3.3 General Remarks -- 3.4 Catalytic Applications of Sn‐ and Zr‐Zeolites -- 3.4.1 Redox Catalysis -- 3.4.1.1 Baeyer-Villiger Oxidation -- 3.4.1.2 Meerwein-Ponndorf-Verley Redox -- 3.4.2 Lewis Acid Catalysis -- 3.4.2.1 Ring Opening of Epoxides -- 3.4.2.2 Aldol Reaction -- 3.4.2.3 Propane Dehydrogenation.
3.4.3 Biomass Conversion -- 3.4.3.1 Sugar Isomerization -- 3.4.3.2 5‐(Hydroxymethyl)Furfural (HMF) Synthesis -- 3.4.3.3 Synthesis of Lactic Acid or Alkyl Lactates -- 3.4.3.4 γ‐Valerolactone Synthesis -- 3.5 General Remarks -- References -- Chapter 4 Synthesis of Germanosilicates -- 4.1 Introduction -- 4.1.1 General Property of Ge/Si Oxides -- 4.1.2 Germanosilicate Glass -- 4.2 Isomorphous Substitution in Germanosilicates -- 4.2.1 Isomorphous Substitution Si in Germanate -- 4.2.2 Isomorphous Substitution Ge in Silicates -- 4.3 Inorganic Structure‐Directing Effects -- 4.3.1 Structure‐Directing Effects of Ge -- 4.3.2 Structure‐Directing Effects of F− -- 4.4 Organic Structure‐Directing Agents in Germanosilicate Synthesis -- 4.4.1 Organic Structure‐Directing Agent Types and Revolutions -- 4.4.2 Two Important Families of OSDA -- 4.5 Structure Diversity of Germanosilicates/Silicogermanates -- 4.5.1 Relationship Between Composition and Structure -- 4.5.2 Pore Opening -- 4.6 Possibility of Elimination of Ge and Catalytic Research of Germanosilicates -- 4.6.1 The Price Concern of Ge -- 4.6.2 Removal of Ge in Zeolite Synthesis -- 4.6.3 Removal of Ge with Post‐synthesis -- 4.6.4 Catalytic Research of Germanosilicates -- 4.7 Conclusions and Outlook -- References -- Chapter 5 Structural Modifications on Germanosilicates -- 5.1 Introduction -- 5.2 Germanosilicates to Layered Precursors -- 5.2.1 UTL to IPC‐1P -- 5.3 ADOR Strategy for Developing New Zeolite Structures -- 5.3.1 Assembly -- 5.3.2 Disassembly -- 5.3.3 Organization -- 5.3.4 Reassembly -- 5.3.5 Liquid‐phase ADOR -- 5.3.5.1 The UTL Case -- 5.3.5.2 The CIT‐13 Case -- 5.3.5.3 The UOV Case -- 5.3.5.4 The IWW Case -- 5.3.6 Vapor‐phase ADOR -- 5.3.7 Reductive Degermanation -- 5.3.8 Solid‐state Transformations -- 5.4 Structure Stabilization -- 5.4.1 Degermanation -- 5.4.2 Functionalization With Catalytic Sites.
5.4.3 Slow Disassembly -- 5.4.4 Reverse ADOR -- 5.5 Germanosilicate‐Derived Catalysts -- 5.5.1 Summary and Perspectives -- Acknowledgements -- References -- Chapter 6 Heteroatom‐Containing Dendritic Mesoporous Silica Nanoparticles -- 6.1 Introduction -- 6.2 Main Synthetic Methods and Formation Mechanism of Pure Silica‐Based Dendritic Mesoporous Silica Nanoparticles (DMSNs) -- 6.2.1 Main Synthetic Methods of Dendritic Mesoporous Silica Nanoparticles (DMSNs) -- 6.2.2 Unified Formation Mechanism of Dendritic Mesoporous Silica Nanoparticles -- 6.3 Synthesis of Heteroatom‐Containing DMSNs and Their Catalytic Applications -- 6.3.1 One‐Pot Doping Strategy for DMSNs Containing Heteroatoms (Al/Ti/V/Sn/Mn/Fe/Co) -- 6.3.2 Post‐grafting for Surface Metal Complexes -- 6.3.3 Loading of Metal and/or Metal Oxide Nanoparticles Within the Nanopores -- 6.4 Summary and Perspectives -- Acknowledgments -- References -- Chapter 7 Chemical Post‐Modifications of Titanosilicates -- 7.1 Introduction -- 7.2 Diffusion and Adsorption/Desorption -- 7.2.1 Hierarchical Titanosilicates -- 7.2.2 Surface Hydrophilicity and Hydrophobicity -- 7.3 Surface Reaction -- 7.3.1 Ti Active Sites Content -- 7.3.2 Ti Active Sites Distribution -- 7.3.3 Ti Active Sites Properties -- 7.3.3.1 Electrophilicity of Ti Active Sites -- 7.3.3.2 Coordinate State of Ti Active Sites -- 7.3.3.3 Adjacent Silanol Groups of Ti Active Sites -- 7.4 Solvent Effect -- 7.4.1 Effect of Solvent on Diffusion -- 7.4.2 Effect of Solvent on Adsorption/Desorption -- 7.4.3 Effect of Solvent on Surface Reactions -- 7.4.3.1 Effect on the Formation on Ti O O H -- 7.4.3.2 Effect on the Stability of Ti O O H -- 7.4.3.3 Effect on the Transfer of Ti O O H -- 7.5 Conclusions and Prospects -- References -- Chapter 8 Spectroscopic Characterization of Heteroatom‐Containing Zeolites -- 8.1 X‐Ray Technique.
8.1.1 XRD Determination of Framework Structure and Heteroatoms in Zeolites -- 8.1.2 XAS Characterization of Metals in Zeolite -- 8.1.3 XPS Analysis of the Chemical State of Metal Species -- 8.2 Ultraviolet-Visible‐Near Infrared (UV-VIS-NIR) Spectroscopy -- 8.2.1 UV-VIS-NIR Characterization of Framework and Non‐Framework Metal Species -- 8.2.2 UV-VIS-NIR Characterization of Metal Species on Ion Exchange Sites of Zeolites -- 8.3 Raman Spectroscopy -- 8.3.1 Raman Study of Synthesis Mechanism and Assembly of Metal‐Zeolites -- 8.3.2 Raman Characterization of Active Metal‐Oxygen Species in Zeolites -- 8.4 Solid‐State NMR Spectroscopy -- 8.4.1 Solid‐State NMR Characterization of Metal Elements in Zeolites -- 8.4.2 Solid‐State Correlation NMR Measurement of Active Site Proximity and Host-Guest Interactions -- 8.4.3 In Situ Solid‐State NMR for the Study of Reaction Mechanisms -- 8.5 Conclusions -- Acknowledgments -- References -- Chapter 9 Theoretical Calculations of Heteroatom Substituted Zeolites -- 9.1 Introduction -- 9.2 Ti‐Doped Zeolites -- 9.2.1 Preferred Tetrahedral (T) Sites for Substitution -- 9.2.2 Lewis Acid -- 9.2.3 Active Site with H2O2 -- 9.2.4 Reaction Mechanism -- 9.2.4.1 Epoxidation of Olefins -- 9.2.4.2 Ammoximation and Oxidation of Cyclohexanone -- 9.2.4.3 Oxidation Desulfurization Reactions -- 9.3 Sn‐Doped Zeolites -- 9.3.1 Preferred Substitution T Sites and Acidity -- 9.3.2 Reaction Mechanism -- 9.3.2.1 Glucose Isomerization to Fructose and Epimerization to Mannose -- 9.3.3 Other Catalytic Reactions -- 9.4 Other Metal‐Substituted Zeolites -- 9.5 Summary and Outlook -- Acknowledgments -- References -- Chapter 10 Catalytic Ammoximation of Ketones or Aldehydes Using Titanosilicates -- 10.1 Introduction -- 10.2 The Development of Titanosilicates in Ammoximation of Ketones and Aldehydes.
10.3 Ammoximation Mechanism and Product Distributions of Representative Ketones and Aldehydes -- 10.3.1 Titanosilicate‐Catalyzed Ammoximation Mechanism -- 10.3.2 Product Distributions for Ammoximation of Representative Carbonyl Compounds -- 10.4 Enhancing Ammoximation Performances in Titanosilicate/H2O2 System -- 10.4.1 Improvement of Catalytic Ammoximation Activity -- 10.4.1.1 Regulation of Ti Active Sites -- 10.4.1.2 Enhancement of Diffusion Properties -- 10.4.1.3 Improvement of Hydrophobicity -- 10.4.1.4 Regulation of Acid Sites -- 10.4.2 Improvement of Catalytic Ammoximation Stability -- 10.5 Ketone Ammoximation Technology for Industrial Processes -- 10.6 Titanosilicate‐Based Bifunctional Catalysts for Process Intensified or Tandem Ammoximation Reactions -- 10.7 Conclusions and Perspectives -- Acknowledgments -- References -- Chapter 11 Titanosilicate‐Based Alkene Epoxidation Catalysis -- 11.1 Introduction -- 11.2 Reaction Chemistry of Alkene Epoxidation Catalyzed by Titanosilicate Zeolites -- 11.3 Typical Alkene Epoxidation Cases -- 11.3.1 Propylene Epoxidation for PO Production -- 11.3.2 Propylene Chloride Epoxidation -- 11.3.3 Ethylene Epoxidation to EO, EG, and Ethers -- 11.4 Industrial Propylene Epoxidation Techniques and Processes -- 11.5 Conclusion and Outlook -- Acknowledgments -- References -- Chapter 12 Propylene Epoxidation with Cumene Hydroperoxide/Titanosilicates -- 12.1 Introduction -- 12.2 Traditional Route for PO Production (Chlorohydrin Process) -- 12.3 Co‐production Route for PO Production (PO/TBA and PO/SM Processes) -- 12.4 PO‐Only Production Routes (HPPO and CMHPPO Routes) -- 12.5 Catalyst Design for PO‐Only Routes -- 12.5.1 Mesoporous Ti‐Doped Catalysts for CMHPPO Process -- 12.5.2 Hierarchical Titanosilicates for CMHPPO Process -- 12.6 Industrial CMHPPO Process -- 12.7 Conclusions and Outlooks -- References.
Chapter 13 Hydroxylation of Benzene and Phenol on Zeolite Catalysts.
Record Nr. UNINA-9910842400303321
Wu Peng  
Newark : , : John Wiley & Sons, Incorporated, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
MWW-type titanosilicate : synthesis, structural modification and catalytic applications to green oxidations / / Peng Wu, Hao Xu, Le Xu, Yueming Liu, Mingyuan He
MWW-type titanosilicate : synthesis, structural modification and catalytic applications to green oxidations / / Peng Wu, Hao Xu, Le Xu, Yueming Liu, Mingyuan He
Autore Wu Peng
Edizione [1st ed. 2013.]
Pubbl/distr/stampa Heidelberg [Germany] : , : Springer, , 2013
Descrizione fisica 1 online resource (viii, 125 pages) : illustrations (some color)
Disciplina 541
Collana SpringerBriefs in Green Chemistry for Sustainability
Soggetto topico Silicates
Zeolites
Green chemistry
ISBN 3-642-39115-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction -- Synthesis of Ti-MWW zeolite -- Post-synthesis modification of Ti-MWW: a door to diversity -- Catalytic properties of Ti-MWW in selective oxidation reactions -- Conclusions and Prospects.
Record Nr. UNINA-9910437822103321
Wu Peng  
Heidelberg [Germany] : , : Springer, , 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Optical imaging and sensing : materials, devices, and applications
Optical imaging and sensing : materials, devices, and applications
Autore Wu Jiang
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2023
Descrizione fisica 1 online resource (289 pages)
Disciplina 621.367
Altri autori (Persone) XuHao
ISBN 3-527-83520-2
3-527-83518-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Introduction of Optical Imaging and Sensing: Materials, Devices, and Applications -- 1.1 Optoelectronic Material Systems -- 1.1.1 Si Platform -- 1.1.2 Two‐dimensional Materials and Their van der Waals Heterostructures -- 1.1.2.1 Graphene -- 1.1.2.2 Transition Metal Dichalcogenides -- 1.1.2.3 2D Heterostructures -- 1.2 Challenges and Prospect of Nano‐optoelectronic Devices -- 1.2.1 III-V Compounds -- 1.2.2 Perovskites -- 1.2.3 Organic Optoelectronic Materials -- References -- Chapter 2 2D Material‐Based Photodetectors for Imaging -- 2.1 Introduction -- 2.2 Visible‐Light Photodetectors -- 2.3 Infrared Photodetectors -- 2.4 Broadband Photodetectors -- 2.5 Plasmon‐Enhanced Photodetectors -- 2.6 Large‐Scale and Flexible Photodetectors -- 2.7 Summary -- References -- Chapter 3 Surface Plasmonic Resonance‐Enhanced Infrared Photodetectors -- 3.1 Introduction -- 3.2 Brief Review of Basic Concepts of SPR and SPR Structures -- 3.2.1 Plasma Oscillations in Metals -- 3.2.2 Complex Permittivity and the Drude Model -- 3.2.3 Surface Plasmonic Waves at the Semi‐infinite Dielectric and Metal Interface -- 3.2.4 Prism‐Coupled Surface Plasmonic Wave Excitation -- 3.2.5 Surface Grating‐Coupled Surface Plasmonic Wave Excitation -- 3.3 Surface Plasmonic Wave‐Enhanced QDIPs -- 3.3.1 Two‐Dimensional Metallic Hole Array (2DSHA)‐Induced Surface Plasmonic Waves -- 3.3.2 2DSHA Surface Plasmonic Structure‐Enhanced QDIP -- 3.4 Localized Surface Plasmonic Wave‐Enhanced QDIPs -- 3.4.1 Localized Surface Plasmonic Waves -- 3.4.2 Near‐Field Distributions -- 3.4.3 Nanowire Pair -- 3.4.4 Circular Disk Array for Broadband IR Photodetector Enhancement -- 3.5 Plasmonic Perfect Absorber (PPA) -- 3.5.1 Introduction to Plasmonic Perfect Absorber -- 3.5.2 Plasmonic Perfect Absorber‐Enhanced QDIP.
3.5.3 Broadband Plasmonic Perfect Absorber -- 3.5.4 2DSHA Plasmonic Perfect Absorber -- 3.6 Chapter Summary -- References -- Chapter 4 Optical Resistance Switch for Optical Sensing -- 4.1 Introduction -- 4.2 Graphene Optical Switch -- 4.2.1 DC Mode of the Gate Capacitor -- 4.2.2 AC Mode of the Gate Capacitor -- 4.3 Nanomaterial Heterostructures‐Based Switch -- 4.3.1 Situation 1: n2L & -- gg -- n2H -- 4.3.2 Situation 2: n2H & -- gg -- n2L -- 4.3.3 Situation 3: n2H ≃ n2L -- 4.4 Modulation Characteristics -- 4.5 Summary -- References -- Chapter 5 Optical Interferometric Sensing -- 5.1 Introduction -- 5.2 Nonlinear Interferometer -- 5.2.1 Experimental Implementation of Phase Locking -- 5.2.2 Quantum Enhancement of Phase Sensitivity -- 5.2.3 Enhancement of Entanglement and Quantum Noise Cancellation -- 5.3 Other Types of Nonlinear Interferometers -- 5.3.1 Nonlinear Sagnac Interferometer -- 5.3.2 Hybrid Interferometer with a Nonlinear FWM Process and a Linear Beam‐splitter -- 5.3.3 Experimental Implementation of a Phase‐Sensitive Parametric Amplifier -- 5.3.4 Interference‐Induced Quantum‐Squeezing Enhancement -- 5.4 Nonlinear Interferometric SPR Sensing -- 5.5 Summary and Outlook -- References -- Chapter 6 Spatial‐frequency‐shift Super‐resolution Imaging Based on Micro/nanomaterials -- 6.1 Introduction -- 6.2 The Principle of SFS Super‐resolution Imaging Based on Micro/nanomaterials -- 6.3 Super‐resolution Imaging Based on Nanowires and Polymers -- 6.4 Super‐resolution Imaging Based on Photonic Waveguides -- 6.4.1 Label‐free Super‐resolution Imaging Based on Photonic Waveguides -- 6.4.2 Labeled Super‐resolution Imaging Based on Photonic Waveguides -- 6.5 Super‐resolution Imaging Based on Wafers -- 6.5.1 Principle of Super‐resolution Imaging Based on Wafers -- 6.5.2 Label‐free Super‐resolution Imaging Based on Wafers.
6.5.3 Labeled Super‐resolution Imaging Based on Wafers -- 6.6 Super‐resolution Imaging Based on SPPs and Metamaterials -- 6.6.1 SPP‐assisted Illumination Nanoscopy -- 6.6.1.1 Metal-Dielectric Multilayer Metasubstrate PSIM -- 6.6.1.2 Graphene‐assisted PSIM -- 6.6.2 Localized Plasmon‐assisted Illumination Nanoscopy -- 6.6.3 Metamaterial‐assisted Illumination Nanoscopy -- 6.7 Summary and Outlook -- References -- Chapter 7 Monolithically Integrated Multi‐section Semiconductor Lasers: Toward the Future of Integrated Microwave Photonics -- 7.1 Introduction -- 7.2 Monolithically Integrated Multi‐section Semiconductor Laser (MI‐MSSL) Device -- 7.2.1 Monolithically Integrated Optical Feedback Lasers (MI‐OFLs) -- 7.2.1.1 Passive Feedback Lasers (PFLs) -- 7.2.1.2 Amplified/Active Feedback Lasers (AFLs) -- 7.2.2 Monolithically Integrated Mutually Injected Semiconductor Lasers (MI‐MISLs) -- 7.3 Electro‐optic Conversion Characteristics -- 7.3.1 Modulation Response Enhancement -- 7.3.2 Nonlinearity Reduction -- 7.3.3 Chirp Suppression -- 7.4 Photonic Microwave Generation -- 7.4.1 Tunable Single‐Tone Microwave Signal Generation -- 7.4.1.1 Free‐Running State -- 7.4.1.2 Mode‐Beating Self‐Pulsations (MB‐SPs) -- 7.4.1.3 Period‐One (P1) Oscillation -- 7.4.1.4 Sideband Injection Locking -- 7.4.2 Frequency‐Modulated Microwave Signal Generation -- 7.4.3 High‐Performance Microwave Signal Generation Optimizing Technique -- 7.5 Microwave Photonic Filter (MPF) -- 7.6 Laser Arrays -- 7.7 Conclusion -- Funding Information -- Disclosures -- References -- Index -- EULA.
Record Nr. UNINA-9910829879803321
Wu Jiang  
Newark : , : John Wiley & Sons, Incorporated, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Optical imaging and sensing : materials, devices, and applications
Optical imaging and sensing : materials, devices, and applications
Autore Wu Jiang
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2023
Descrizione fisica 1 online resource (289 pages)
Disciplina 621.367
Altri autori (Persone) XuHao
ISBN 3-527-83520-2
3-527-83518-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Introduction of Optical Imaging and Sensing: Materials, Devices, and Applications -- 1.1 Optoelectronic Material Systems -- 1.1.1 Si Platform -- 1.1.2 Two‐dimensional Materials and Their van der Waals Heterostructures -- 1.1.2.1 Graphene -- 1.1.2.2 Transition Metal Dichalcogenides -- 1.1.2.3 2D Heterostructures -- 1.2 Challenges and Prospect of Nano‐optoelectronic Devices -- 1.2.1 III-V Compounds -- 1.2.2 Perovskites -- 1.2.3 Organic Optoelectronic Materials -- References -- Chapter 2 2D Material‐Based Photodetectors for Imaging -- 2.1 Introduction -- 2.2 Visible‐Light Photodetectors -- 2.3 Infrared Photodetectors -- 2.4 Broadband Photodetectors -- 2.5 Plasmon‐Enhanced Photodetectors -- 2.6 Large‐Scale and Flexible Photodetectors -- 2.7 Summary -- References -- Chapter 3 Surface Plasmonic Resonance‐Enhanced Infrared Photodetectors -- 3.1 Introduction -- 3.2 Brief Review of Basic Concepts of SPR and SPR Structures -- 3.2.1 Plasma Oscillations in Metals -- 3.2.2 Complex Permittivity and the Drude Model -- 3.2.3 Surface Plasmonic Waves at the Semi‐infinite Dielectric and Metal Interface -- 3.2.4 Prism‐Coupled Surface Plasmonic Wave Excitation -- 3.2.5 Surface Grating‐Coupled Surface Plasmonic Wave Excitation -- 3.3 Surface Plasmonic Wave‐Enhanced QDIPs -- 3.3.1 Two‐Dimensional Metallic Hole Array (2DSHA)‐Induced Surface Plasmonic Waves -- 3.3.2 2DSHA Surface Plasmonic Structure‐Enhanced QDIP -- 3.4 Localized Surface Plasmonic Wave‐Enhanced QDIPs -- 3.4.1 Localized Surface Plasmonic Waves -- 3.4.2 Near‐Field Distributions -- 3.4.3 Nanowire Pair -- 3.4.4 Circular Disk Array for Broadband IR Photodetector Enhancement -- 3.5 Plasmonic Perfect Absorber (PPA) -- 3.5.1 Introduction to Plasmonic Perfect Absorber -- 3.5.2 Plasmonic Perfect Absorber‐Enhanced QDIP.
3.5.3 Broadband Plasmonic Perfect Absorber -- 3.5.4 2DSHA Plasmonic Perfect Absorber -- 3.6 Chapter Summary -- References -- Chapter 4 Optical Resistance Switch for Optical Sensing -- 4.1 Introduction -- 4.2 Graphene Optical Switch -- 4.2.1 DC Mode of the Gate Capacitor -- 4.2.2 AC Mode of the Gate Capacitor -- 4.3 Nanomaterial Heterostructures‐Based Switch -- 4.3.1 Situation 1: n2L & -- gg -- n2H -- 4.3.2 Situation 2: n2H & -- gg -- n2L -- 4.3.3 Situation 3: n2H ≃ n2L -- 4.4 Modulation Characteristics -- 4.5 Summary -- References -- Chapter 5 Optical Interferometric Sensing -- 5.1 Introduction -- 5.2 Nonlinear Interferometer -- 5.2.1 Experimental Implementation of Phase Locking -- 5.2.2 Quantum Enhancement of Phase Sensitivity -- 5.2.3 Enhancement of Entanglement and Quantum Noise Cancellation -- 5.3 Other Types of Nonlinear Interferometers -- 5.3.1 Nonlinear Sagnac Interferometer -- 5.3.2 Hybrid Interferometer with a Nonlinear FWM Process and a Linear Beam‐splitter -- 5.3.3 Experimental Implementation of a Phase‐Sensitive Parametric Amplifier -- 5.3.4 Interference‐Induced Quantum‐Squeezing Enhancement -- 5.4 Nonlinear Interferometric SPR Sensing -- 5.5 Summary and Outlook -- References -- Chapter 6 Spatial‐frequency‐shift Super‐resolution Imaging Based on Micro/nanomaterials -- 6.1 Introduction -- 6.2 The Principle of SFS Super‐resolution Imaging Based on Micro/nanomaterials -- 6.3 Super‐resolution Imaging Based on Nanowires and Polymers -- 6.4 Super‐resolution Imaging Based on Photonic Waveguides -- 6.4.1 Label‐free Super‐resolution Imaging Based on Photonic Waveguides -- 6.4.2 Labeled Super‐resolution Imaging Based on Photonic Waveguides -- 6.5 Super‐resolution Imaging Based on Wafers -- 6.5.1 Principle of Super‐resolution Imaging Based on Wafers -- 6.5.2 Label‐free Super‐resolution Imaging Based on Wafers.
6.5.3 Labeled Super‐resolution Imaging Based on Wafers -- 6.6 Super‐resolution Imaging Based on SPPs and Metamaterials -- 6.6.1 SPP‐assisted Illumination Nanoscopy -- 6.6.1.1 Metal-Dielectric Multilayer Metasubstrate PSIM -- 6.6.1.2 Graphene‐assisted PSIM -- 6.6.2 Localized Plasmon‐assisted Illumination Nanoscopy -- 6.6.3 Metamaterial‐assisted Illumination Nanoscopy -- 6.7 Summary and Outlook -- References -- Chapter 7 Monolithically Integrated Multi‐section Semiconductor Lasers: Toward the Future of Integrated Microwave Photonics -- 7.1 Introduction -- 7.2 Monolithically Integrated Multi‐section Semiconductor Laser (MI‐MSSL) Device -- 7.2.1 Monolithically Integrated Optical Feedback Lasers (MI‐OFLs) -- 7.2.1.1 Passive Feedback Lasers (PFLs) -- 7.2.1.2 Amplified/Active Feedback Lasers (AFLs) -- 7.2.2 Monolithically Integrated Mutually Injected Semiconductor Lasers (MI‐MISLs) -- 7.3 Electro‐optic Conversion Characteristics -- 7.3.1 Modulation Response Enhancement -- 7.3.2 Nonlinearity Reduction -- 7.3.3 Chirp Suppression -- 7.4 Photonic Microwave Generation -- 7.4.1 Tunable Single‐Tone Microwave Signal Generation -- 7.4.1.1 Free‐Running State -- 7.4.1.2 Mode‐Beating Self‐Pulsations (MB‐SPs) -- 7.4.1.3 Period‐One (P1) Oscillation -- 7.4.1.4 Sideband Injection Locking -- 7.4.2 Frequency‐Modulated Microwave Signal Generation -- 7.4.3 High‐Performance Microwave Signal Generation Optimizing Technique -- 7.5 Microwave Photonic Filter (MPF) -- 7.6 Laser Arrays -- 7.7 Conclusion -- Funding Information -- Disclosures -- References -- Index -- EULA.
Record Nr. UNINA-9910840674203321
Wu Jiang  
Newark : , : John Wiley & Sons, Incorporated, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui