Vai al contenuto principale della pagina

Stability-constrained optimization for modern power system operation and planning / / Yan Xu, Yuan Chi, Heling Yuan



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Xu Yan (Associate professor) Visualizza persona
Titolo: Stability-constrained optimization for modern power system operation and planning / / Yan Xu, Yuan Chi, Heling Yuan Visualizza cluster
Pubblicazione: Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2023]
©2023
Descrizione fisica: 1 online resource (499 pages)
Disciplina: 621.319
Soggetto topico: Electric power system stability
Persona (resp. second.): JiYuan
YuanHeling
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: Cover -- Title Page -- Copyright Page -- Contents -- About the Authors -- Foreword -- Preface -- Part I Power System Stability Preliminaries -- List of Acronyms -- Chapter 1 Power System Stability: Definition, Classification, and Phenomenon -- 1.1 Introduction -- 1.2 Definition -- 1.3 Classification -- 1.4 Rotor Angle Stability -- 1.4.1 Large-Disturbance Rotor Angle Stability -- 1.4.2 Small-Disturbance Rotor Angle Stability -- 1.5 Voltage Stability -- 1.5.1 Large-Disturbance Voltage Stability -- 1.5.2 Small-Disturbance Voltage Stability -- 1.6 Frequency Stability -- 1.7 Resonance Stability -- 1.7.1 Torsional Resonance -- 1.7.2 Electrical Resonance -- 1.8 Converter-Driven Stability -- 1.8.1 Fast-Interaction Converter-Driven Stability -- 1.8.2 Slow-Interaction Converter-Driven Stability -- References -- Chapter 2 Mathematical Models and Analysis Methods for Power System Stability -- 2.1 Introduction -- 2.2 General Mathematical Model -- 2.3 Transient Stability Criteria -- 2.4 Time-Domain Simulation -- 2.5 Extended Equal-Area Criterion (EEAC) -- 2.6 Trajectory Sensitivity Analysis -- 2.6.1 Basic Concept -- Nomenclature -- References -- Chapter 3 Recent Large-Scale Blackouts in the World -- 3.1 Introduction -- 3.2 Major Blackouts in the World -- 3.2.1 Blackouts Triggered by Transmission Line Out-of-Service -- 3.2.1.1 U S-Canada Blackout (2003) -- 3.2.1.2 Europe Blackout (2006) -- 3.2.1.3 U S Blackout (2011) -- 3.2.1.4 South Australia Blackout (2016) -- 3.2.1.5 Venezuela Blackout (2019) -- 3.2.2 Blackouts Triggered by Equipment Faults -- 3.2.2.1 Brazil Blackout (2018) -- 3.2.2.2 Singapore Blackout (2018) -- 3.2.2.3 U S Blackout (2021) -- 3.2.3 Blackouts Triggered by Cyber Attack -- 3.2.3.1 Ukraine Blackout (2015) -- References -- Part II Transient Stability-Constrained Dispatch and Operational Control -- List of Acronyms.
Chapter 4 Power System Operation and Optimization Models -- 4.1 Introduction -- 4.2 Overview and Framework of Power System Operation -- 4.3 Mathematical Models for Power System Optimal Operation -- 4.3.1 Optimal Power Flow (OPF) -- 4.3.2 Security-Constrained Optimal Power Flow (SCOPF) -- 4.3.2.1 Preventive SCOPF -- 4.3.2.2 Corrective SCOPF -- 4.3.2.3 Preventive-Corrective SCOPF -- 4.3.3 Unit Commitment (UC) -- 4.3.4 Security-Constrained Unit Commitment (SCUC) -- 4.3.5 Solution Strategy for Security-Constrained UC/OPF -- 4.3.6 Renewable Energy Sources in UC and OPF -- 4.3.7 Smart Grid Elements -- 4.4 Power System Operation Practices -- Nomenclature -- References -- Chapter 5 Transient Stability-Constrained Optimal Power Flow (TSC-OPF): Modeling and Classic Solution Methods -- 5.1 Mathematical Model -- 5.2 Discretization-based Method -- 5.3 Direct Method -- 5.4 Evolutionary Algorithm-based Method -- 5.5 Discussion and Summary -- 5.5.1 Numerical Simulation Results on Benchmark Systems -- Nomenclature -- References -- Chapter 6 Hybrid Method for Transient Stability-Constrained Optimal Power Flow -- 6.1 Introduction -- 6.2 Proposed Hybrid Method -- 6.2.1 Mathematical Model -- 6.2.2 Computation Process -- 6.2.3 Remarks -- 6.3 Technical Specification -- 6.3.1 Application of TSI and TSA Tool -- 6.3.2 Solution Approach -- 6.4 Case Studies -- 6.4.1 New England 10-Machine 39-Bus System -- 6.4.2 39-Machine 120-Bus System -- 6.4.3 Discussion -- 6.4.4 Computation Efficiency Improvement -- Nomenclature -- References -- Chapter 7 Data-Driven Method for Transient Stability-Constrained Optimal Power Flow -- 7.1 Introduction -- 7.2 Decision Tree-based Method -- 7.2.1 DT for Classification -- 7.2.2 Preventive Control Strategy Based on DT -- 7.2.2.1 Problem Description -- 7.2.2.2 Feature Space Selection-Critical Generators Identification.
7.2.2.3 Generation Rescheduling Within OPF -- 7.2.2.4 Computation Process -- 7.3 Pattern Discovery-based Method -- 7.3.1 Pattern Discovery -- 7.3.1.1 Overview -- 7.3.1.2 Key Definition -- 7.3.1.3 PD by Residual Analysis and Recursive Partitioning -- 7.3.2 Preventive Control Strategy Based on PD -- 7.3.2.1 General Description -- 7.3.2.2 Feature Space Selection-Critical Generator Identification -- 7.3.2.3 Pattern-based Dynamic Secure/Insecure Regions -- 7.3.2.4 Computation Process -- 7.4 Case Studies -- 7.4.1 Test System and Simulation Software -- 7.4.2 Database Preparation -- 7.4.3 DT-based Method and Numerical Simulation Results -- 7.4.3.1 Database Generation -- 7.4.3.2 Critical Generators -- 7.4.3.3 DT and Rules -- 7.4.3.4 Single-contingency Controls -- 7.4.3.5 Multi-contingency Controls -- 7.4.3.6 Conclusive Remarks -- 7.4.4 PD-based Method and Numerical Simulation Results -- 7.4.4.1 Database Generation -- 7.4.4.2 Critical Generators -- 7.4.4.3 Pattern Discovery Results -- 7.4.4.4 Preventive Control Results -- 7.4.4.5 Multi-contingency Controls -- 7.4.4.6 Discussion -- Nomenclature -- References -- Chapter 8 Transient Stability-Constrained Unit Commitment (TSCUC) -- 8.1 Introduction -- 8.2 TSC-UC model -- 8.2.1 Steady-State Security Constraints -- 8.2.2 Transient Stability Constraints -- 8.3 Transient Stability Control -- 8.4 Decomposition-based Solution Approach -- 8.4.1 Decomposition Strategy -- 8.4.2 Master Problem -- 8.4.3 Subproblem -- 8.4.3.1 Network Steady-State Security Evaluation (NSE) -- 8.4.3.2 Transient Stability Assessment (TSA) -- 8.4.3.3 Solution Procedure -- 8.5 Case Studies -- 8.5.1 Implementation of the Approach -- 8.5.2 New England 10-Machine 39-Bus System -- 8.5.2.1 SCUC Results -- 8.5.2.2 TSCUC Results-Single-contingency Case -- 8.5.2.3 TSCUC Results-Multi-contingency Case -- 8.5.2.4 Computation Efficiency Analysis.
8.5.3 IEEE 50-Machine System -- Nomenclature -- References -- Chapter 9 Transient Stability-Constrained Optimal Power Flow under Uncertainties -- 9.1 Introduction -- 9.2 TSC-OPF Model with Uncertain Dynamic Load Models -- 9.2.1 Load Modeling -- 9.2.1.1 Complex Load Model -- 9.2.1.2 Uncertainty Modeling -- 9.2.1.3 Taguchi's Orthogonal Array Testing (TOAT) -- 9.2.2 Mathematical Model -- 9.2.3 Critical Uncertain Parameter Identification -- 9.2.4 Solution Approach -- 9.2.4.1 Master Problem -- 9.2.4.2 Subproblem -- 9.2.4.3 Computation Process -- 9.3 Case Studies for TSC-OPF Under Uncertain Dynamic Loads -- 9.3.1 Simulation Settings -- 9.3.2 Transient Stability with Dynamic Loads -- 9.3.3 Single-contingency Case for New England 10-Machine 39-Bus System -- 9.3.4 Multi-contingency Case for New England 10-Machine 39-Bus System -- 9.3.5 Result Verification -- 9.3.6 Computation Efficiency Analysis -- 9.4 TSC-OPF Model with Uncertain Wind Power Generation -- 9.4.1 Mathematical Model -- 9.4.2 Construction of Transient Stability Constraints -- 9.4.3 Robust Design of Wind Uncertainty -- 9.4.4 Solution Approach -- 9.4.4.1 Decomposition Scheme -- 9.4.4.2 Master Problem -- 9.4.4.3 Slave Problem -- 9.4.4.4 Computation Process -- 9.5 Case Studies for TSC-OPF Under Uncertain Wind Power -- 9.5.1 Simulation Settings -- 9.5.2 Base Dispatch for New England 10-Machine 39-Bus System -- 9.5.3 Single-contingency Case for New England 10-Machine 39-Bus System -- 9.5.4 Multi-contingency Case for New England 10-Machine 39-Bus System -- 9.5.5 Numerical Test on Nordic32 System -- 9.5.6 Computation Efficiency Analysis -- 9.6 Discussions and Concluding Remarks -- Nomenclature -- References -- Chapter 10 Optimal Generation Rescheduling for Preventive Transient Stability Control -- 10.1 Introduction -- 10.2 Trajectory Sensitivity Analysis for Transient Stability.
10.3 Transient Stability Preventive Control Based on Critical OMIB -- 10.3.1 Stability Constraint Construction -- 10.3.2 Mathematical Model -- 10.3.3 Computation Process -- 10.4 Case Studies of Transient Stability Preventive Control Based on the Critical OMIB -- 10.4.1 Simulation Setup -- 10.4.2 New England 10-Machine 39-Bus System -- 10.4.2.1 System Trajectories -- 10.4.2.2 Trajectory Sensitivities -- 10.4.2.3 Stabilizing Results -- 10.4.2.4 Control Accuracy -- 10.4.3 285-Machine. 1648-Bus System -- 10.4.3.1 System Trajectories -- 10.4.3.2 Trajectory Sensitivities -- 10.4.3.3 Stabilizing Results -- 10.4.4 Computation Efficiency Analysis -- 10.5 Transient Stability Preventive Control Based on Stability Margin -- 10.5.1 Stability Constraint Construction -- 10.5.2 Mathematical Model -- 10.5.3 Computation Process -- 10.6 Case Studies of Transient Stability Preventive Control Based on Stability Margin -- 10.6.1 Simulation Setup -- 10.6.2 Single-contingency Case for New England 10-Machine 39-Bus System -- 10.6.3 Multi-contingency Case for New England 10-Machine 39-Bus System -- 10.6.4 Control Accuracy -- 10.6.5 Computation Efficiency Analysis -- Nomenclature -- References -- Chapter 11 Preventive-Corrective Coordinated Transient Stability-Constrained Optimal Power Flow under Uncertain Wind Power -- 11.1 Introduction -- 11.2 Framework of the PC-CC Coordinated TSC-OPF -- 11.3 PC-CC Coordinated Mathematical Model -- 11.3.1 Risk Index -- 11.3.2 Uncertainty Modeling -- 11.3.3 Two-step Bi-level Compact Model -- 11.3.4 Upper Level -- 11.3.5 Lower Level -- 11.3.5.1 Preventive Control -- 11.3.5.2 Corrective Control -- 11.4 Solution Method for the PC-CC Coordinated Model -- 11.4.1 Trajectory Sensitivity-based Stabilization Constraints -- 11.4.2 Taguchi's Orthogonal Array Testing (TOAT) -- 11.4.3 Golden Section Search -- 11.4.4 Computation Process.
11.5 Case Studies.
Titolo autorizzato: Stability-constrained optimization for modern power system operation and planning  Visualizza cluster
ISBN: 1-119-84889-X
1-119-84887-3
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910830579603321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: IEEE Press Series on Power and Energy Systems Series