top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Anechoic and reverberation chambers : theory, design and measurements / / Qian Xu, College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China, Yi Huang, The University of Liverpool, Liverpool, UK
Anechoic and reverberation chambers : theory, design and measurements / / Qian Xu, College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China, Yi Huang, The University of Liverpool, Liverpool, UK
Autore Xu Qian <1985->
Pubbl/distr/stampa Hoboken, New Jersey, USA : , : Wiley-IEEE Press, , 2018
Descrizione fisica 1 online resource (381 pages)
Disciplina 621.3028/7
Soggetto topico Anechoic chambers
Electromagnetic reverberation chambers
Electromagnetic measurements
Electromagnetic waves - Transmission
Shielding (Electricity)
Soggetto genere / forma Electronic books.
ISBN 1-119-36205-9
1-119-36202-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto About the Authors xi -- About the Contributors xiii -- Acknowledgements xv -- Acronyms xvii -- 1 Introduction 1 -- 1.1 Background 1 -- 1.1.1 Anechoic Chambers 1 -- 1.1.2 Reverberation Chambers 3 -- 1.1.3 Relationship between Anechoic Chambers and Reverberation Chambers 6 -- 1.2 Organisation of this Book 6 -- References 8 -- 2 Theory for Anechoic Chamber Design 11 -- 2.1 Introduction 11 -- 2.2 Absorbing Material Basics 11 -- 2.2.1 General Knowledge 11 -- 2.2.2 Absorbing Material Simulation 14 -- 2.2.3 Absorbing Material Measurement 16 -- 2.3 CEM Algorithms Overview 22 -- 2.4 GO Theory 23 -- 2.4.1 GO from Maxwell Equations 23 -- 2.4.2 Analytical Expression of a Reflected Field from a Curved Surface 24 -- 2.4.3 Alternative GO Form 28 -- 2.5 GO-FEM Hybrid Method 29 -- 2.6 Summary 30 -- References 30 -- 3 Computer-aided Anechoic Chamber Design 35 -- 3.1 Introduction 35 -- 3.2 Framework 35 -- 3.3 Software Implementation 35 -- 3.3.1 3D Model Description 35 -- 3.3.2 Algorithm Complexities 36 -- 3.3.3 Far-Field Data 39 -- 3.3.4 Boundary Conditions 40 -- 3.3.5 RAM Description 41 -- 3.3.6 Forward Algorithm 42 -- 3.3.7 Inverse Algorithm 54 -- 3.3.8 Post Processing 55 -- 3.4 Summary 56 -- References 57 -- 4 Anechoic Chamber Design Examples and Verifications 59 -- 4.1 Introduction 59 -- 4.2 Normalised Site Attenuation 59 -- 4.2.1 NSA Definition 59 -- 4.2.2 NSA Simulation and Measurement 60 -- 4.3 Site Voltage Standing Wave Ratio 68 -- 4.3.1 SVSWR Definition 68 -- 4.3.2 SVSWR Simulation and Measurement 72 -- 4.4 Field Uniformity 75 -- 4.4.1 FU Definition 75 -- 4.4.2 FU Simulation and Measurement 76 -- 4.5 Design Margin 79 -- 4.6 Summary 86 -- References 87 -- 5 Fundamentals of the Reverberation Chamber 89 -- 5.1 Introduction 89 -- 5.2 Resonant Cavity Model 89 -- 5.3 Ray Model 95 -- 5.4 Statistical Electromagnetics 96 -- 5.4.1 Plane-Wave Spectrum Model 96 -- 5.4.2 Field Correlations 99 -- 5.4.3 Boundary Fields 102 -- 5.4.4 Enhanced Backscattering Effect 108 -- 5.4.5 Loss Mechanism 109.
5.4.6 Probability Distribution Functions 112 -- 5.5 Figures of Merit 117 -- 5.5.1 Field Uniformity 117 -- 5.5.2 Lowest Usable Frequency 121 -- 5.5.3 Correlation Coefficient and Independent Sample Number 121 -- 5.5.4 Field Anisotropy Coefficients and Inhomogeneity Coefficients 124 -- 5.5.5 Stirring Ratio 126 -- 5.5.6 K-Factor 126 -- 5.6 Summary 128 -- References 128 -- 6 The Design of a Reverberation Chamber 133 -- 6.1 Introduction 133 -- 6.2 Design Guidelines 133 -- 6.2.1 The Shape of the RC 133 -- 6.2.2 The Lowest Usable Frequency 134 -- 6.2.3 The Working Volume 135 -- 6.2.4 The Q Factor 135 -- 6.2.5 The Stirrer Design 137 -- 6.3 Simulation of the RC 140 -- 6.3.1 Monte Carlo Method 140 -- 6.3.2 Time Domain Simulation 142 -- 6.3.3 Frequency Domain Simulation 142 -- 6.4 Time Domain Characterisation of the RC 145 -- 6.4.1 Statistical Behaviour in the Time Domain 146 -- 6.4.2 Stirrer Efficiency Based on Total Scattering Cross Section 151 -- 6.4.3 Time-Gating Technique 163 -- 6.5 Duality Principle in the RC 166 -- 6.6 The Limit of ACS and TSCS 169 -- 6.7 Design Example 172 -- 6.8 Summary 174 -- References 174 -- 7 Applications in the Reverberation Chamber 185 -- 7.1 Introduction 185 -- 7.2 Q Factor and Decay Constant 185 -- 7.3 Radiated Immunity Test 192 -- 7.4 Radiated Emission Measurement 193 -- 7.5 Free-Space Antenna S-Parameter Measurement 196 -- 7.6 Antenna Radiation Efficiency Measurement 199 -- 7.6.1 Reference Antenna Method 199 -- 7.6.2 Non-reference Antenna Method 200 -- 7.7 MIMO Antenna and Channel Emulation 212 -- 7.7.1 Diversity Gain Measurement 212 -- 7.7.2 Total Isotropic Sensitivity Measurement 219 -- 7.7.3 Channel Capacity Measurement 220 -- 7.7.4 Doppler Effect 220 -- 7.8 Antenna Radiation Pattern Measurement 223 -- 7.8.1 Theory 223 -- 7.8.2 Simulations and Measurements 228 -- 7.8.3 Discussion and Error Analysis 238 -- 7.9 Material Measurements 243 -- 7.9.1 Absorption Cross Section 243 -- 7.9.2 Average Absorption Coefficient 250 -- 7.9.3 Permittivity 257.
7.9.4 Material Shielding Effectiveness 263 -- 7.10 Cavity Shielding Effectiveness Measurement 264 -- 7.11 Volume Measurement 270 -- 7.12 Summary 276 -- References 276 -- 8 Measurement Uncertainty in the Reverberation Chamber 283 /Xiaoming Chen, Yuxin Ren, and Zhihua Zhang -- 8.1 Introduction 283 -- 8.2 Procedure for Uncertainty Characterisation 283 -- 8.3 Uncertainty Model 283 -- 8.3.1 ACF Method 284 -- 8.3.2 DoF Method 285 -- 8.3.3 Comparison of ACF and DoF Methods 286 -- 8.3.4 Semi-empirical Model 289 -- 8.4 Measurement Uncertainty of Antenna Efficiency 293 -- 8.5 Summary 300 -- References 301 -- 9 Inter-Comparison Between Antenna Radiation Efficiency Measurements Performed in an Anechoic Chamber and in a Reverberation Chamber 305 /Tian-Hong Loh and Wanquan Qi -- 9.1 Introduction 305 -- 9.2 Measurement Facilities and Setups 306 -- 9.2.1 Anechoic Chamber 306 -- 9.2.2 Reverberation Chamber 307 -- 9.3 Antenna Efficiency Measurements 308 -- 9.3.1 Theory 308 -- 9.3.1.1 Radiation Efficiency Using the Anechoic Chamber 308 -- 9.3.1.2 Radiation Efficiency Using the Reverberation Chamber 309 -- 9.3.2 Comparison Between the AC and the RC 309 -- 9.3.2.1 Biconical Antenna 309 -- 9.3.2.2 Horn Antenna 312 -- 9.3.2.3 MIMO Antenna 312 -- 9.4 Summary 318 -- Acknowledgement 319 -- References 319 -- 10 Discussion on Future Applications 323 -- 10.1 Introduction 323 -- 10.2 Anechoic Chambers 323 -- 10.3 Reverberation Chambers 323 -- References 325 -- Appendix A Code Snippets 327 -- Appendix B Reference NSA Values 339 -- Appendix C Test Report Template 345 -- Appendix D Typical Bandpass Filters 351 -- Appendix E Compact Reverberation Chamber at NUAA 359 -- Appendix F Relevant Statistics 373 -- Index 379.
Record Nr. UNINA-9910466907303321
Xu Qian <1985->  
Hoboken, New Jersey, USA : , : Wiley-IEEE Press, , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Anechoic and reverberation chambers : theory, design and measurements / / Qian Xu, College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China, Yi Huang, The University of Liverpool, Liverpool, UK
Anechoic and reverberation chambers : theory, design and measurements / / Qian Xu, College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China, Yi Huang, The University of Liverpool, Liverpool, UK
Autore Xu Qian <1985->
Pubbl/distr/stampa Hoboken, New Jersey, USA : , : Wiley-IEEE Press, , 2018
Descrizione fisica 1 online resource (381 pages)
Disciplina 621.3028/7
Collana THEi Wiley ebooks.
Soggetto topico Anechoic chambers
Electromagnetic reverberation chambers
Electromagnetic measurements
Electromagnetic waves - Transmission
Shielding (Electricity)
ISBN 1-119-36204-0
1-119-36205-9
1-119-36202-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto About the Authors xi -- About the Contributors xiii -- Acknowledgements xv -- Acronyms xvii -- 1 Introduction 1 -- 1.1 Background 1 -- 1.1.1 Anechoic Chambers 1 -- 1.1.2 Reverberation Chambers 3 -- 1.1.3 Relationship between Anechoic Chambers and Reverberation Chambers 6 -- 1.2 Organisation of this Book 6 -- References 8 -- 2 Theory for Anechoic Chamber Design 11 -- 2.1 Introduction 11 -- 2.2 Absorbing Material Basics 11 -- 2.2.1 General Knowledge 11 -- 2.2.2 Absorbing Material Simulation 14 -- 2.2.3 Absorbing Material Measurement 16 -- 2.3 CEM Algorithms Overview 22 -- 2.4 GO Theory 23 -- 2.4.1 GO from Maxwell Equations 23 -- 2.4.2 Analytical Expression of a Reflected Field from a Curved Surface 24 -- 2.4.3 Alternative GO Form 28 -- 2.5 GO-FEM Hybrid Method 29 -- 2.6 Summary 30 -- References 30 -- 3 Computer-aided Anechoic Chamber Design 35 -- 3.1 Introduction 35 -- 3.2 Framework 35 -- 3.3 Software Implementation 35 -- 3.3.1 3D Model Description 35 -- 3.3.2 Algorithm Complexities 36 -- 3.3.3 Far-Field Data 39 -- 3.3.4 Boundary Conditions 40 -- 3.3.5 RAM Description 41 -- 3.3.6 Forward Algorithm 42 -- 3.3.7 Inverse Algorithm 54 -- 3.3.8 Post Processing 55 -- 3.4 Summary 56 -- References 57 -- 4 Anechoic Chamber Design Examples and Verifications 59 -- 4.1 Introduction 59 -- 4.2 Normalised Site Attenuation 59 -- 4.2.1 NSA Definition 59 -- 4.2.2 NSA Simulation and Measurement 60 -- 4.3 Site Voltage Standing Wave Ratio 68 -- 4.3.1 SVSWR Definition 68 -- 4.3.2 SVSWR Simulation and Measurement 72 -- 4.4 Field Uniformity 75 -- 4.4.1 FU Definition 75 -- 4.4.2 FU Simulation and Measurement 76 -- 4.5 Design Margin 79 -- 4.6 Summary 86 -- References 87 -- 5 Fundamentals of the Reverberation Chamber 89 -- 5.1 Introduction 89 -- 5.2 Resonant Cavity Model 89 -- 5.3 Ray Model 95 -- 5.4 Statistical Electromagnetics 96 -- 5.4.1 Plane-Wave Spectrum Model 96 -- 5.4.2 Field Correlations 99 -- 5.4.3 Boundary Fields 102 -- 5.4.4 Enhanced Backscattering Effect 108 -- 5.4.5 Loss Mechanism 109.
5.4.6 Probability Distribution Functions 112 -- 5.5 Figures of Merit 117 -- 5.5.1 Field Uniformity 117 -- 5.5.2 Lowest Usable Frequency 121 -- 5.5.3 Correlation Coefficient and Independent Sample Number 121 -- 5.5.4 Field Anisotropy Coefficients and Inhomogeneity Coefficients 124 -- 5.5.5 Stirring Ratio 126 -- 5.5.6 K-Factor 126 -- 5.6 Summary 128 -- References 128 -- 6 The Design of a Reverberation Chamber 133 -- 6.1 Introduction 133 -- 6.2 Design Guidelines 133 -- 6.2.1 The Shape of the RC 133 -- 6.2.2 The Lowest Usable Frequency 134 -- 6.2.3 The Working Volume 135 -- 6.2.4 The Q Factor 135 -- 6.2.5 The Stirrer Design 137 -- 6.3 Simulation of the RC 140 -- 6.3.1 Monte Carlo Method 140 -- 6.3.2 Time Domain Simulation 142 -- 6.3.3 Frequency Domain Simulation 142 -- 6.4 Time Domain Characterisation of the RC 145 -- 6.4.1 Statistical Behaviour in the Time Domain 146 -- 6.4.2 Stirrer Efficiency Based on Total Scattering Cross Section 151 -- 6.4.3 Time-Gating Technique 163 -- 6.5 Duality Principle in the RC 166 -- 6.6 The Limit of ACS and TSCS 169 -- 6.7 Design Example 172 -- 6.8 Summary 174 -- References 174 -- 7 Applications in the Reverberation Chamber 185 -- 7.1 Introduction 185 -- 7.2 Q Factor and Decay Constant 185 -- 7.3 Radiated Immunity Test 192 -- 7.4 Radiated Emission Measurement 193 -- 7.5 Free-Space Antenna S-Parameter Measurement 196 -- 7.6 Antenna Radiation Efficiency Measurement 199 -- 7.6.1 Reference Antenna Method 199 -- 7.6.2 Non-reference Antenna Method 200 -- 7.7 MIMO Antenna and Channel Emulation 212 -- 7.7.1 Diversity Gain Measurement 212 -- 7.7.2 Total Isotropic Sensitivity Measurement 219 -- 7.7.3 Channel Capacity Measurement 220 -- 7.7.4 Doppler Effect 220 -- 7.8 Antenna Radiation Pattern Measurement 223 -- 7.8.1 Theory 223 -- 7.8.2 Simulations and Measurements 228 -- 7.8.3 Discussion and Error Analysis 238 -- 7.9 Material Measurements 243 -- 7.9.1 Absorption Cross Section 243 -- 7.9.2 Average Absorption Coefficient 250 -- 7.9.3 Permittivity 257.
7.9.4 Material Shielding Effectiveness 263 -- 7.10 Cavity Shielding Effectiveness Measurement 264 -- 7.11 Volume Measurement 270 -- 7.12 Summary 276 -- References 276 -- 8 Measurement Uncertainty in the Reverberation Chamber 283 /Xiaoming Chen, Yuxin Ren, and Zhihua Zhang -- 8.1 Introduction 283 -- 8.2 Procedure for Uncertainty Characterisation 283 -- 8.3 Uncertainty Model 283 -- 8.3.1 ACF Method 284 -- 8.3.2 DoF Method 285 -- 8.3.3 Comparison of ACF and DoF Methods 286 -- 8.3.4 Semi-empirical Model 289 -- 8.4 Measurement Uncertainty of Antenna Efficiency 293 -- 8.5 Summary 300 -- References 301 -- 9 Inter-Comparison Between Antenna Radiation Efficiency Measurements Performed in an Anechoic Chamber and in a Reverberation Chamber 305 /Tian-Hong Loh and Wanquan Qi -- 9.1 Introduction 305 -- 9.2 Measurement Facilities and Setups 306 -- 9.2.1 Anechoic Chamber 306 -- 9.2.2 Reverberation Chamber 307 -- 9.3 Antenna Efficiency Measurements 308 -- 9.3.1 Theory 308 -- 9.3.1.1 Radiation Efficiency Using the Anechoic Chamber 308 -- 9.3.1.2 Radiation Efficiency Using the Reverberation Chamber 309 -- 9.3.2 Comparison Between the AC and the RC 309 -- 9.3.2.1 Biconical Antenna 309 -- 9.3.2.2 Horn Antenna 312 -- 9.3.2.3 MIMO Antenna 312 -- 9.4 Summary 318 -- Acknowledgement 319 -- References 319 -- 10 Discussion on Future Applications 323 -- 10.1 Introduction 323 -- 10.2 Anechoic Chambers 323 -- 10.3 Reverberation Chambers 323 -- References 325 -- Appendix A Code Snippets 327 -- Appendix B Reference NSA Values 339 -- Appendix C Test Report Template 345 -- Appendix D Typical Bandpass Filters 351 -- Appendix E Compact Reverberation Chamber at NUAA 359 -- Appendix F Relevant Statistics 373 -- Index 379.
Record Nr. UNINA-9910535551703321
Xu Qian <1985->  
Hoboken, New Jersey, USA : , : Wiley-IEEE Press, , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Anechoic and reverberation chambers : theory, design and measurements / / Qian Xu, College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China, Yi Huang, The University of Liverpool, Liverpool, UK
Anechoic and reverberation chambers : theory, design and measurements / / Qian Xu, College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China, Yi Huang, The University of Liverpool, Liverpool, UK
Autore Xu Qian <1985->
Pubbl/distr/stampa Hoboken, New Jersey, USA : , : Wiley-IEEE Press, , 2018
Descrizione fisica 1 online resource (381 pages)
Disciplina 621.3028/7
Collana THEi Wiley ebooks.
Soggetto topico Anechoic chambers
Electromagnetic reverberation chambers
Electromagnetic measurements
Electromagnetic waves - Transmission
Shielding (Electricity)
ISBN 1-119-36204-0
1-119-36205-9
1-119-36202-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto About the Authors xi -- About the Contributors xiii -- Acknowledgements xv -- Acronyms xvii -- 1 Introduction 1 -- 1.1 Background 1 -- 1.1.1 Anechoic Chambers 1 -- 1.1.2 Reverberation Chambers 3 -- 1.1.3 Relationship between Anechoic Chambers and Reverberation Chambers 6 -- 1.2 Organisation of this Book 6 -- References 8 -- 2 Theory for Anechoic Chamber Design 11 -- 2.1 Introduction 11 -- 2.2 Absorbing Material Basics 11 -- 2.2.1 General Knowledge 11 -- 2.2.2 Absorbing Material Simulation 14 -- 2.2.3 Absorbing Material Measurement 16 -- 2.3 CEM Algorithms Overview 22 -- 2.4 GO Theory 23 -- 2.4.1 GO from Maxwell Equations 23 -- 2.4.2 Analytical Expression of a Reflected Field from a Curved Surface 24 -- 2.4.3 Alternative GO Form 28 -- 2.5 GO-FEM Hybrid Method 29 -- 2.6 Summary 30 -- References 30 -- 3 Computer-aided Anechoic Chamber Design 35 -- 3.1 Introduction 35 -- 3.2 Framework 35 -- 3.3 Software Implementation 35 -- 3.3.1 3D Model Description 35 -- 3.3.2 Algorithm Complexities 36 -- 3.3.3 Far-Field Data 39 -- 3.3.4 Boundary Conditions 40 -- 3.3.5 RAM Description 41 -- 3.3.6 Forward Algorithm 42 -- 3.3.7 Inverse Algorithm 54 -- 3.3.8 Post Processing 55 -- 3.4 Summary 56 -- References 57 -- 4 Anechoic Chamber Design Examples and Verifications 59 -- 4.1 Introduction 59 -- 4.2 Normalised Site Attenuation 59 -- 4.2.1 NSA Definition 59 -- 4.2.2 NSA Simulation and Measurement 60 -- 4.3 Site Voltage Standing Wave Ratio 68 -- 4.3.1 SVSWR Definition 68 -- 4.3.2 SVSWR Simulation and Measurement 72 -- 4.4 Field Uniformity 75 -- 4.4.1 FU Definition 75 -- 4.4.2 FU Simulation and Measurement 76 -- 4.5 Design Margin 79 -- 4.6 Summary 86 -- References 87 -- 5 Fundamentals of the Reverberation Chamber 89 -- 5.1 Introduction 89 -- 5.2 Resonant Cavity Model 89 -- 5.3 Ray Model 95 -- 5.4 Statistical Electromagnetics 96 -- 5.4.1 Plane-Wave Spectrum Model 96 -- 5.4.2 Field Correlations 99 -- 5.4.3 Boundary Fields 102 -- 5.4.4 Enhanced Backscattering Effect 108 -- 5.4.5 Loss Mechanism 109.
5.4.6 Probability Distribution Functions 112 -- 5.5 Figures of Merit 117 -- 5.5.1 Field Uniformity 117 -- 5.5.2 Lowest Usable Frequency 121 -- 5.5.3 Correlation Coefficient and Independent Sample Number 121 -- 5.5.4 Field Anisotropy Coefficients and Inhomogeneity Coefficients 124 -- 5.5.5 Stirring Ratio 126 -- 5.5.6 K-Factor 126 -- 5.6 Summary 128 -- References 128 -- 6 The Design of a Reverberation Chamber 133 -- 6.1 Introduction 133 -- 6.2 Design Guidelines 133 -- 6.2.1 The Shape of the RC 133 -- 6.2.2 The Lowest Usable Frequency 134 -- 6.2.3 The Working Volume 135 -- 6.2.4 The Q Factor 135 -- 6.2.5 The Stirrer Design 137 -- 6.3 Simulation of the RC 140 -- 6.3.1 Monte Carlo Method 140 -- 6.3.2 Time Domain Simulation 142 -- 6.3.3 Frequency Domain Simulation 142 -- 6.4 Time Domain Characterisation of the RC 145 -- 6.4.1 Statistical Behaviour in the Time Domain 146 -- 6.4.2 Stirrer Efficiency Based on Total Scattering Cross Section 151 -- 6.4.3 Time-Gating Technique 163 -- 6.5 Duality Principle in the RC 166 -- 6.6 The Limit of ACS and TSCS 169 -- 6.7 Design Example 172 -- 6.8 Summary 174 -- References 174 -- 7 Applications in the Reverberation Chamber 185 -- 7.1 Introduction 185 -- 7.2 Q Factor and Decay Constant 185 -- 7.3 Radiated Immunity Test 192 -- 7.4 Radiated Emission Measurement 193 -- 7.5 Free-Space Antenna S-Parameter Measurement 196 -- 7.6 Antenna Radiation Efficiency Measurement 199 -- 7.6.1 Reference Antenna Method 199 -- 7.6.2 Non-reference Antenna Method 200 -- 7.7 MIMO Antenna and Channel Emulation 212 -- 7.7.1 Diversity Gain Measurement 212 -- 7.7.2 Total Isotropic Sensitivity Measurement 219 -- 7.7.3 Channel Capacity Measurement 220 -- 7.7.4 Doppler Effect 220 -- 7.8 Antenna Radiation Pattern Measurement 223 -- 7.8.1 Theory 223 -- 7.8.2 Simulations and Measurements 228 -- 7.8.3 Discussion and Error Analysis 238 -- 7.9 Material Measurements 243 -- 7.9.1 Absorption Cross Section 243 -- 7.9.2 Average Absorption Coefficient 250 -- 7.9.3 Permittivity 257.
7.9.4 Material Shielding Effectiveness 263 -- 7.10 Cavity Shielding Effectiveness Measurement 264 -- 7.11 Volume Measurement 270 -- 7.12 Summary 276 -- References 276 -- 8 Measurement Uncertainty in the Reverberation Chamber 283 /Xiaoming Chen, Yuxin Ren, and Zhihua Zhang -- 8.1 Introduction 283 -- 8.2 Procedure for Uncertainty Characterisation 283 -- 8.3 Uncertainty Model 283 -- 8.3.1 ACF Method 284 -- 8.3.2 DoF Method 285 -- 8.3.3 Comparison of ACF and DoF Methods 286 -- 8.3.4 Semi-empirical Model 289 -- 8.4 Measurement Uncertainty of Antenna Efficiency 293 -- 8.5 Summary 300 -- References 301 -- 9 Inter-Comparison Between Antenna Radiation Efficiency Measurements Performed in an Anechoic Chamber and in a Reverberation Chamber 305 /Tian-Hong Loh and Wanquan Qi -- 9.1 Introduction 305 -- 9.2 Measurement Facilities and Setups 306 -- 9.2.1 Anechoic Chamber 306 -- 9.2.2 Reverberation Chamber 307 -- 9.3 Antenna Efficiency Measurements 308 -- 9.3.1 Theory 308 -- 9.3.1.1 Radiation Efficiency Using the Anechoic Chamber 308 -- 9.3.1.2 Radiation Efficiency Using the Reverberation Chamber 309 -- 9.3.2 Comparison Between the AC and the RC 309 -- 9.3.2.1 Biconical Antenna 309 -- 9.3.2.2 Horn Antenna 312 -- 9.3.2.3 MIMO Antenna 312 -- 9.4 Summary 318 -- Acknowledgement 319 -- References 319 -- 10 Discussion on Future Applications 323 -- 10.1 Introduction 323 -- 10.2 Anechoic Chambers 323 -- 10.3 Reverberation Chambers 323 -- References 325 -- Appendix A Code Snippets 327 -- Appendix B Reference NSA Values 339 -- Appendix C Test Report Template 345 -- Appendix D Typical Bandpass Filters 351 -- Appendix E Compact Reverberation Chamber at NUAA 359 -- Appendix F Relevant Statistics 373 -- Index 379.
Record Nr. UNINA-9910827379303321
Xu Qian <1985->  
Hoboken, New Jersey, USA : , : Wiley-IEEE Press, , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui