top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Realizing the Metaverse : A Communications and Networking Perspective
Realizing the Metaverse : A Communications and Networking Perspective
Autore Lim Wei Yang Bryan
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2024
Descrizione fisica 1 online resource (206 pages)
Altri autori (Persone) XiongZehui
NiyatoDusit
ZhangJunshan
ShenXuemin
ISBN 9781394188918
1394188919
9781394188925
1394188927
9781394188932
1394188935
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910911296103321
Lim Wei Yang Bryan  
Newark : , : John Wiley & Sons, Incorporated, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Trustworthy Federated Learning [[electronic resource] ] : First International Workshop, FL 2022, Held in Conjunction with IJCAI 2022, Vienna, Austria, July 23, 2022, Revised Selected Papers / / edited by Randy Goebel, Han Yu, Boi Faltings, Lixin Fan, Zehui Xiong
Trustworthy Federated Learning [[electronic resource] ] : First International Workshop, FL 2022, Held in Conjunction with IJCAI 2022, Vienna, Austria, July 23, 2022, Revised Selected Papers / / edited by Randy Goebel, Han Yu, Boi Faltings, Lixin Fan, Zehui Xiong
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (168 pages) : illustrations
Disciplina 006.3
Collana Lecture Notes in Artificial Intelligence
Soggetto topico Artificial intelligence
Data protection
Social sciences—Data processing
Application software
Artificial Intelligence
Data and Information Security
Computer Application in Social and Behavioral Sciences
Computer and Information Systems Applications
ISBN 9783031289965
9783031289958
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Adaptive Expert Models for Personalization in Federated Learning -- Federated Learning with GAN-based Data Synthesis for Non-iid Clients -- Practical and Secure Federated Recommendation with Personalized Mask -- A General Theory for Client Sampling in Federated Learning -- Decentralized adaptive clustering of deep nets is beneficial for client collaboration -- Sketch to Skip and Select: Communication Efficient Federated Learning using Locality Sensitive Hashing -- Fast Server Learning Rate Tuning for Coded Federated Dropout -- FedAUXfdp: Differentially Private One-Shot Federated Distillation -- Secure forward aggregation for vertical federated neural network -- Two-phased Federated Learning with Clustering and Personalization for Natural Gas Load Forecasting -- Privacy-Preserving Federated Cross-Domain Social Recommendation.
Record Nr. UNISA-996517751703316
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Trustworthy Federated Learning : First International Workshop, FL 2022, Held in Conjunction with IJCAI 2022, Vienna, Austria, July 23, 2022, Revised Selected Papers / / edited by Randy Goebel, Han Yu, Boi Faltings, Lixin Fan, Zehui Xiong
Trustworthy Federated Learning : First International Workshop, FL 2022, Held in Conjunction with IJCAI 2022, Vienna, Austria, July 23, 2022, Revised Selected Papers / / edited by Randy Goebel, Han Yu, Boi Faltings, Lixin Fan, Zehui Xiong
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (168 pages) : illustrations
Disciplina 006.3
006.31
Collana Lecture Notes in Artificial Intelligence
Soggetto topico Artificial intelligence
Data protection
Social sciences—Data processing
Application software
Artificial Intelligence
Data and Information Security
Computer Application in Social and Behavioral Sciences
Computer and Information Systems Applications
ISBN 9783031289965
9783031289958
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Adaptive Expert Models for Personalization in Federated Learning -- Federated Learning with GAN-based Data Synthesis for Non-iid Clients -- Practical and Secure Federated Recommendation with Personalized Mask -- A General Theory for Client Sampling in Federated Learning -- Decentralized adaptive clustering of deep nets is beneficial for client collaboration -- Sketch to Skip and Select: Communication Efficient Federated Learning using Locality Sensitive Hashing -- Fast Server Learning Rate Tuning for Coded Federated Dropout -- FedAUXfdp: Differentially Private One-Shot Federated Distillation -- Secure forward aggregation for vertical federated neural network -- Two-phased Federated Learning with Clustering and Personalization for Natural Gas Load Forecasting -- Privacy-Preserving Federated Cross-Domain Social Recommendation.
Record Nr. UNINA-9910683360003321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui