top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advances in Knowledge Discovery and Data Mining : 28th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2024, Taipei, Taiwan, May 7-10, 2024, Proceedings, Part VI
Advances in Knowledge Discovery and Data Mining : 28th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2024, Taipei, Taiwan, May 7-10, 2024, Proceedings, Part VI
Autore Yang De-Nian
Edizione [1st ed.]
Pubbl/distr/stampa Singapore : , : Springer Singapore Pte. Limited, , 2024
Descrizione fisica 1 online resource (329 pages)
Altri autori (Persone) XieXing
TsengVincent S
PeiJian
HuangJen-Wei
LinJerry Chun-Wei
Collana Lecture Notes in Computer Science Series
ISBN 981-9722-66-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- General Chairs' Preface -- PC Chairs' Preface -- Organization -- Contents - Part VI -- Scientific Data -- FR3LS: A Forecasting Model with Robust and Reduced Redundancy Latent Series -- 1 Introduction -- 2 Related Work -- 3 Problem Setup -- 4 Model Architecture -- 4.1 Temporal Contextual Consistency -- 4.2 Non-contrastive Representations Learning -- 4.3 Deterministic Forecasting -- 4.4 Probabilistic Forecasting -- 4.5 End-to-End Training -- 5 Experiments -- 5.1 Experimental Results -- 5.2 Visualization of Latent and Original Series Forecasts -- 5.3 Further Experimental Setup Details -- 6 Conclusion -- References -- Knowledge-Infused Optimization for Parameter Selection in Numerical Simulations -- 1 Introduction -- 2 Preliminaries on Numerical Simulations -- 3 Identification and Analysis of Relevant Metadata -- 4 Efficient Metadata Capture for Parameter Optimization -- 4.1 Early Termination of Farming Runs -- 4.2 PROBE: Probing Specific Parameter Combinations -- 5 Experimental Evaluation -- 5.1 Quality of Parameter Optimization Using PROBE -- 5.2 Efficiency Evaluation -- 5.3 Reuse of Metadata Acquired Through PROBE -- 5.4 Generalization to Other Model Problems and Schemes -- 6 Conclusion and Outlook -- References -- Material Microstructure Design Using VAE-Regression with a Multimodal Prior -- 1 Introduction -- 2 Methodology -- 3 Related Work -- 4 Experimental Results -- 5 Summary and Conclusions -- References -- A Weighted Cross-Modal Feature Aggregation Network for Rumor Detection -- 1 Introduction -- 2 Related Work -- 2.1 Rumor Detection -- 2.2 Multimodal Alignment -- 3 Methodology -- 3.1 Overview of WCAN -- 3.2 Feature Extraction -- 3.3 Weighted Cross-Modal Aggregation Module -- 3.4 Multimodal Feature Fusion -- 3.5 Objective Function -- 4 Experiments -- 4.1 Datasets -- 4.2 Baselines -- 4.3 Ablation Experiment.
4.4 Hyper-parameter Analysis -- 4.5 Visualization on the Representations -- 4.6 Case Study -- 5 Conclusions -- References -- Texts, Web, Social Network -- Quantifying Opinion Rejection: A Method to Detect Social Media Echo Chambers -- 1 Introduction -- 2 Related Work -- 3 Preliminaries -- 4 Echo Chamber Detection in Signed Networks -- 5 SEcho Method -- 5.1 SEcho Metric -- 5.2 Greedy Optimisation -- 6 Experiments -- 7 Conclusion -- References -- KiProL: A Knowledge-Injected Prompt Learning Framework for Language Generation -- 1 Introduction -- 2 Methodology -- 2.1 Problem Statement -- 2.2 Knowledge-Injected Prompt Learning Generation -- 2.3 Training and Inference -- 3 Experiments -- 3.1 Datasets -- 3.2 Settings -- 3.3 Automatic Evaluation -- 3.4 Human Annotation -- 3.5 Ablation Study -- 3.6 In-Depth Analysis -- 3.7 Case Study -- 4 Conclusion -- References -- GViG: Generative Visual Grounding Using Prompt-Based Language Modeling for Visual Question Answering -- 1 Introduction -- 2 Related Work -- 2.1 Pix2Seq Framework -- 2.2 Prompt Tuning -- 3 Methodology -- 3.1 Prompt Tuning Module -- 3.2 VG Module -- 3.3 Conditional Trie-Based Search Algorithm (CTS) -- 4 Results -- 4.1 Dataset Description -- 4.2 Results on WSDM 2023 Toloka VQA Dataset Benchmark -- 5 Discussion -- 5.1 Prompt Study -- 5.2 Interpretable Attention -- 6 Conclusion -- References -- Aspect-Based Fake News Detection -- 1 Introduction -- 2 Related Work -- 3 Methodology -- 3.1 Problem Definition and Model Overview -- 3.2 Aspect Learning and Extraction -- 3.3 News Article Classification -- 4 Experiments -- 4.1 Datasets -- 4.2 Experimental Settings -- 4.3 Evaluation -- 5 Analysing the Effect of Aspects Across Topics -- 6 Discussion and Future Work -- 7 Conclusion -- References -- DQAC: Detoxifying Query Auto-completion with Adapters -- 1 Introduction -- 2 Related Work -- 3 Methodology.
3.1 QDetoxify: Toxicity Classifier for Search Queries -- 3.2 The DQAC Model -- 4 Experimental Setup -- 5 Results and Analyses -- 6 Conclusions -- References -- Graph Neural Network Approach to Semantic Type Detection in Tables -- 1 Introduction -- 2 Related Works -- 3 Problem Definition -- 4 GAIT -- 4.1 Single-Column Prediction -- 4.2 Graph-Based Prediction -- 4.3 Overall Prediction -- 5 Evaluation -- 5.1 Evaluation Method -- 5.2 Results -- 6 Conclusion -- References -- TCGNN: Text-Clustering Graph Neural Networks for Fake News Detection on Social Media -- 1 Introduction -- 2 Related Work -- 3 The Proposed TCGNN Method -- 3.1 Text-Clustering Graph Construction -- 3.2 Model Training -- 4 Experiments -- 5 Conclusions and Discussion -- References -- Exploiting Adaptive Contextual Masking for Aspect-Based Sentiment Analysis -- 1 Introduction -- 2 Related Work -- 3 Methodology -- 3.1 Problem Formulation and Motivation -- 3.2 Standalone ABSA Tasks -- 3.3 Adaptive Contextual Threshold Masking (ACTM) -- 3.4 Adaptive Attention Masking (AAM) -- 3.5 Adaptive Mask Over Masking (AMOM) -- 3.6 Training Procedure for ATE and ASC -- 4 Experiments and Results -- 5 Conclusion -- References -- An Automated Approach for Generating Conceptual Riddles -- 1 Introduction -- 2 Related Work -- 3 Methodology -- 3.1 Triples Creator -- 3.2 Properties Classifier -- 3.3 Generator -- 3.4 Validator -- 4 Evaluation and Results -- 5 Conclusion and Future Work -- References -- Time-Series and Streaming Data -- DiffFind: Discovering Differential Equations from Time Series -- 1 Introduction -- 2 Background and Related Work -- 2.1 Related Work -- 2.2 Background - Genetic Algorithms for Architecture Search -- 3 Proposed Method: DiffFind -- 4 Experiments -- 4.1 Q1 - DiffFind is Effective -- 4.2 Q2 - DiffFind is Explainable -- 4.3 Q3 - DiffFind is Scalable -- 5 Conclusions -- References.
DEAL: Data-Efficient Active Learning for Regression Under Drift -- 1 Introduction -- 2 Related Work -- 3 Problem Statement and Notation -- 4 Our Method: DEAL -- 4.1 The Adapted Stream-Based AL Cycle -- 4.2 Our Drift-Aware Estimation Model -- 5 Experimental Design -- 5.1 Baselines -- 5.2 Evaluation Data -- 5.3 Evaluation Metrics -- 6 Evaluation -- 6.1 Comparison of DEAL Against Baselines -- 6.2 Impact of the User-Required Error Threshold -- 7 Conclusion -- References -- Evolving Super Graph Neural Networks for Large-Scale Time-Series Forecasting -- 1 Introduction -- 2 Related Models -- 3 Evolving Super Graph Neural Networks -- 3.1 Preliminary Notations -- 3.2 Super Graph Construction -- 4 Diffusion on Evolving Super Graphs -- 4.1 Predictor -- 5 Experiments on Large-Scale Datasets -- 5.1 Forecasting Result and Analysis -- 5.2 Runtime and Space Usage Analysis -- 5.3 Ablation Study -- 6 Conclusion -- References -- Unlearnable Examples for Time Series -- 1 Introduction -- 2 Related Work -- 2.1 Data Poisoning -- 2.2 Adversarial Attack -- 2.3 Unlearnable Examples -- 3 Error-Minimizing Noise for Time Series -- 3.1 Objective -- 3.2 Threat Model -- 3.3 Challenges -- 3.4 Problem Formulation -- 3.5 A Straightforward Baseline Approach -- 3.6 Controllable Noise on Partial Time Series Samples -- 4 Experiments -- 4.1 Experiment Setup -- 4.2 Against Classification Models -- 4.3 Against Generative Models -- 5 Conclusion -- References -- Learning Disentangled Task-Related Representation for Time Series -- 1 Introduction -- 2 Related Work -- 3 The Proposed Method -- 3.1 Overview -- 3.2 Task-Relevant Feature Disentangled -- 3.3 Task-Adaptive Augmentation Selection -- 4 Experiments and Discussions -- 4.1 Datasets and Implementation Details -- 4.2 Ablation Analysis -- 4.3 Results on Classification Tasks -- 4.4 Results on Forecasting Tasks -- 4.5 Visualization Analysis.
5 Conclusion -- References -- A Multi-view Feature Construction and Multi-Encoder-Decoder Transformer Architecture for Time Series Classification -- 1 Introduction -- 2 Related Works -- 3 Problem Formulation -- 4 Methodology -- 4.1 Feature Construction -- 4.2 Multi-view Representation -- 4.3 Multi-Encoder-Decoder Transformer (MEDT) Classification -- 5 Experiments -- 5.1 Experiments Using Multivariate Time Series Data Benchmarks -- 5.2 Experiment Using a Real-World Physical Activities Dataset -- 6 Conclusion -- References -- Kernel Representation Learning with Dynamic Regime Discovery for Time Series Forecasting -- 1 Introduction -- 2 Related Work -- 3 Preliminaries -- 3.1 Key Concepts -- 3.2 Self-representation Learning in Time Series -- 3.3 Kernel Trick for Modeling Time Series -- 4 Proposed Method -- 4.1 Kernel Representation Learning: Modeling Regime Behavior -- 4.2 Forecasting -- 5 Experiments -- 5.1 Data -- 5.2 Experimental Setup and Evaluation -- 5.3 Regime Identification -- 5.4 Benchmark Comparison -- 5.5 Ablation Study -- 6 Conclusion -- References -- Hyperparameter Tuning MLP's for Probabilistic Time Series Forecasting -- 1 Introduction -- 2 Problem Statement -- 3 MLPs for Time Series Forecasting -- 3.1 Nlinear Model -- 4 Hyperparameters -- 4.1 Time Series Specific Configuration -- 4.2 Training Specific Configurations -- 4.3 TSBench-Metadataset -- 5 Experimental Setup -- 6 Results -- 7 Conclusion -- References -- Efficient and Accurate Similarity-Aware Graph Neural Network for Semi-supervised Time Series Classification -- 1 Introduction -- 2 Related Work -- 2.1 Graph-Based Time Series Classification -- 2.2 Lower Bound of DTW -- 3 Problem Formulation -- 4 Methodology -- 4.1 Batch Sampling -- 4.2 LB_Keogh Graph Construction -- 4.3 Graph Convolution and Classification -- 4.4 Advantages of Our Model -- 5 Experimental Evaluation.
5.1 Comparing with 1NN-DTW.
Record Nr. UNISA-996594166503316
Yang De-Nian  
Singapore : , : Springer Singapore Pte. Limited, , 2024
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Advances in Knowledge Discovery and Data Mining : 28th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2024, Taipei, Taiwan, May 7-10, 2024, Proceedings, Part III
Advances in Knowledge Discovery and Data Mining : 28th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2024, Taipei, Taiwan, May 7-10, 2024, Proceedings, Part III
Autore Yang De-Nian
Edizione [1st ed.]
Pubbl/distr/stampa Singapore : , : Springer Singapore Pte. Limited, , 2024
Descrizione fisica 1 online resource (448 pages)
Altri autori (Persone) XieXing
TsengVincent S
PeiJian
HuangJen-Wei
LinJerry Chun-Wei
Collana Lecture Notes in Computer Science Series
ISBN 981-9722-59-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- General Chairs' Preface -- PC Chairs' Preface -- Organization -- Contents - Part III -- Interpretability and Explainability -- Neural Additive and Basis Models with Feature Selection and Interactions -- 1 Introduction -- 2 Generalized Additive Models (GAMs) -- 2.1 Neural Additive Model (NAM) -- 2.2 Neural Basis Model (NBM) -- 3 NAM and NBM with Feature Selection -- 3.1 Motivation -- 3.2 Model Architecture -- 3.3 Implementation Remark -- 4 Discussion of Model Complexities -- 5 Experiments -- 5.1 Experimental Settings -- 5.2 Baselines -- 5.3 Results -- 6 Conclusion -- References -- Random Mask Perturbation Based Explainable Method of Graph Neural Networks -- 1 Introduction -- 2 Related Work -- 3 Problem Statement -- 4 Explainable Method -- 4.1 Node Importance Based on Fidelity -- 4.2 Explanation Sparsity -- 5 Experiments -- 5.1 Experimental Setup -- 5.2 Quantitative Experiments -- 5.3 Ablation Study -- 5.4 Use Case -- 6 Conclusion -- References -- RouteExplainer: An Explanation Framework for Vehicle Routing Problem -- 1 Introduction -- 2 Related Work -- 3 Proposed Framework: RouteExplainer -- 3.1 Many-to-Many Edge Classifier -- 3.2 Counterfactual Explanation for VRP -- 4 Experiments -- 4.1 Quantitative Evaluation of the Edge Classifier -- 4.2 Qualitative Evaluation of Generated Explanations -- 5 Conclusion and Future Work -- References -- On the Efficient Explanation of Outlier Detection Ensembles Through Shapley Values -- 1 Introduction -- 2 Related Work -- 3 Outlier Detection Ensembles -- 4 The bagged Shapley Values -- 5 Theoretical Guarantees for the Approximation -- 6 Experiments -- 6.1 Quality of the Approximation -- 6.2 Effectiveness -- 6.3 Scalability -- 7 Conclusions -- References -- Interpreting Pretrained Language Models via Concept Bottlenecks -- 1 Introduction -- 2 Related Work -- 2.1 Interpreting Pretrained Language Models.
2.2 Learning from Noisy Labels -- 3 Enable Concept Bottlenecks for PLMs -- 3.1 Problem Setup -- 4 C3M: A General Framework for Learning CBE-PLMs -- 4.1 ChatGPT-Guided Concept Augmentation -- 4.2 Learning from Noisy Concept Labels -- 5 Experiments -- 6 Conclusion -- A Definitions of Training Strategies -- B Details of the Manual Concept Annotation for the IMDB Dataset -- C Implementation Detail -- D Parameters and Notations -- E Statistics of Data Splits -- F Statistics of Concepts in Transformed Datasets -- G More Results on Explainable Predictions -- H A Case Study on Test-Time Intervention -- I Examples of Querying ChatGPT -- References -- Unmasking Dementia Detection by Masking Input Gradients: A JSM Approach to Model Interpretability and Precision -- 1 Introduction -- 2 Related Work -- 3 Methods -- 3.1 Jacobian Saliency Map (JSM) -- 3.2 Jacobian-Augmented Loss Function (JAL) -- 4 Experiments -- 4.1 Dataset -- 4.2 Preprocessing -- 4.3 Multimodal Classification -- 4.4 Performance Evaluation -- 5 Conclusion -- References -- Towards Nonparametric Topological Layers in Neural Networks -- 1 Introduction -- 1.1 Background -- 1.2 Motivation and Challenges -- 1.3 Contributions -- 2 Preliminaries and Related Work -- 2.1 Basics of Topology -- 2.2 Topological Neural Network -- 2.3 Functional Spaces for Machine Learning -- 3 Methodology -- 4 Evaluation -- 4.1 Experimental Setup -- 4.2 Implementation -- 4.3 Overall Performance -- 4.4 Learning Rate -- 4.5 Temporal-Spatial Correlation -- 5 Conclusion -- References -- Online, Streaming, Distributed Algorithms -- Streaming Fair k-Center Clustering over Massive Dataset with Performance Guarantee -- 1 Introduction -- 1.1 Problem Statement -- 1.2 Related Work -- 1.3 Our Contribution -- 2 A Two-Pass Algorithm with Approximation Ratio 3 -- 2.1 The -Independent Center Set -- 2.2 The Two-Pass Streaming Algorithm.
3 The Streaming Algorithm with an Approximation Ratio 7 -- 3.1 The Streaming Algorithm for Constructing 1 and 2 -- 3.2 Post-streaming Construction of Center Set C from 12 -- 4 Experimental Results -- 4.1 Experimental Setting -- 4.2 Experimental Analysis -- 5 Conclusion -- References -- Projection-Free Bandit Convex Optimization over Strongly Convex Sets -- 1 Introduction -- 2 Related Work -- 2.1 Projection-Free OCO Algorithms -- 2.2 Bandit Convex Optimization -- 3 Main Results -- 3.1 Preliminaries -- 3.2 Our Proposed Algorithm -- 3.3 Theoretical Guarantees -- 4 Experiments -- 4.1 Problem Settings -- 4.2 Experimental Results -- 5 Conclusion -- References -- Adaptive Prediction Interval for Data Stream Regression -- 1 Introduction -- 2 Related Work -- 3 Background -- 4 Adaptive Prediction Interval(AdaPI) -- 5 Experiments and Results -- 5.1 Comparison to Interval Forecast -- 5.2 Comparison Between MVE and AdaPI -- 6 Conclusions -- References -- Probabilistic Guarantees of Stochastic Recursive Gradient in Non-convex Finite Sum Problems -- 1 Introduction -- 1.1 Related Works -- 1.2 Our Contributions -- 1.3 Notation -- 2 Prob-SARAH Algorithm -- 3 Theoretical Results -- 3.1 Technical Assumptions -- 3.2 Main Results on Complexity -- 3.3 Proof Sketch -- 4 Numerical Experiments -- 4.1 Logistic Regression with Non-convex Regularization -- 4.2 Two-Layer Neural Network -- 5 Conclusion -- References -- Rethinking Personalized Federated Learning with Clustering-Based Dynamic Graph Propagation -- 1 Introduction -- 2 Related Work -- 3 Methodology -- 3.1 Model Overview -- 3.2 Client Model Clustering -- 3.3 Dynamic Weighted Graph Construction -- 3.4 Knowledge Propagation and Aggregation -- 3.5 Precise Personalized Model Distribution -- 4 Experiment -- 4.1 Experiment Setup -- 4.2 Performance Evaluation -- 4.3 Ablation Study -- 4.4 Case Study -- 4.5 Hyperparameter Study.
5 Conclusion -- References -- Unveiling Backdoor Risks Brought by Foundation Models in Heterogeneous Federated Learning -- 1 Introduction -- 2 Related Work -- 3 Methodology -- 3.1 Threat Model -- 3.2 FMs Empowered Backdoor Attacks to HFL -- 4 Experiment -- 4.1 Experiment Setup -- 4.2 Experimental Results -- 4.3 Homogeneous Setting Evaluation -- 4.4 Case Study: Attack Effectiveness v.s. Public Data Utilization Ratio -- 4.5 Hyper-Parameter Study: ASR v.s. Poisoning Ratio -- 5 Conclusion -- References -- Combating Quality Distortion in Federated Learning with Collaborative Data Selection -- 1 Introduction -- 2 Related Works -- 3 Proposal -- 3.1 Preliminaries -- 3.2 Design Principle -- 3.3 Collaborative Sample Selection (CSS) -- 4 Evaluation -- 4.1 Datasets and Experimental Settings -- 4.2 Experimental Results -- 5 Conclusion -- References -- Probabilistic Models and Statistical Inference -- Neural Marked Hawkes Process for Limit Order Book Modeling -- 1 Introduction -- 2 Background -- 3 Neural Marked Hawkes Process -- 4 Related Work -- 5 Experiments -- 6 Conclusion -- References -- How Large Corpora Sizes Influence the Distribution of Low Frequency Text n-grams -- 1 Introduction -- 2 Background and Related Work -- 3 The Model -- 4 Results -- 4.1 The Corpora Collection -- 4.2 The Range of k Values for W(k,C -- L,n) Prediction -- 4.3 The Assessment Criteria and Parameter Estimation -- 4.4 Comparison with Other Models -- 4.5 Obtained Results -- 4.6 The Predictions with Growing Corpus Size -- 5 Conclusions -- References -- Meta-Reinforcement Learning Algorithm Based on Reward and Dynamic Inference -- 1 Introduction -- 2 Background -- 2.1 Meta-Reinforcement Learning -- 2.2 Context-Based Meta-Reinforcement Learning -- 2.3 Parametric Task Distributions -- 3 Problem Statement -- 4 Method -- 4.1 Reward and Dynamics Inference.
4.2 Meta-Reinforcement Learning Algorithm Based on Reward and Dynamics Inference Encoders -- 5 Experiment -- 5.1 Common MuJoCo Environments -- 5.2 Cartesian Product Combinations of Tasks with Different Goals and Dynamics -- 6 Discussion -- References -- Security and Privacy -- SecureBoost+: Large Scale and High-Performance Vertical Federated Gradient Boosting Decision Tree -- 1 Introduction -- 2 Preliminaries -- 2.1 Gradient Boosting Decision Tree -- 2.2 Paillier Homomorphic Encryption -- 2.3 SecureBoost -- 2.4 Performance Bottlenecks Analysis for SecureBoost -- 3 Proposed SecureBoost+ Framework -- 3.1 Ciphertext Operation Optimization -- 3.2 Training Mechanism Optimization -- 4 Experiments -- 4.1 Setup -- 4.2 Ciphertext Operation Optimization Evaluation -- 4.3 Training Mechanism Optimization Evaluation -- 5 Conclusion -- References -- Construct a Secure CNN Against Gradient Inversion Attack -- 1 Introduction -- 2 Preliminary -- 2.1 Federated Learning -- 2.2 Gradient Inversion Attack -- 2.3 Recursive Gradient Attack on Privacy (R-GAP) -- 3 Secure Convolutional Neural Networks -- 4 Experiment -- 4.1 Quantitative Results -- 4.2 Quantitative Results -- 5 Related Work -- 6 Limitation and Conclusion -- References -- Backdoor Attack Against One-Class Sequential Anomaly Detection Models -- 1 Introduction -- 2 Related Work -- 3 Preliminaries -- 3.1 Deep One-Class Sequential Anomaly Detection -- 3.2 Mutual Information Maximization -- 4 Methodology -- 4.1 Threat Model -- 4.2 The Proposed Attack -- 4.3 Post-deployment Attack -- 5 Experiments -- 5.1 Experimental Setup -- 5.2 Experimental Results -- 6 Conclusions -- References -- Semi-supervised and Unsupervised Learning -- DALLMi: Domain Adaption for LLM-Based Multi-label Classifier -- 1 Introduction -- 2 Language Model and Domain Adaptation -- 3 DALLMi -- 4 Experiments -- 5 Conclusion -- References.
Contrastive Learning for Unsupervised Sentence Embedding with False Negative Calibration.
Record Nr. UNISA-996594167903316
Yang De-Nian  
Singapore : , : Springer Singapore Pte. Limited, , 2024
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Advances in Knowledge Discovery and Data Mining : 28th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2024, Taipei, Taiwan, May 7-10, 2024, Proceedings, Part I
Advances in Knowledge Discovery and Data Mining : 28th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2024, Taipei, Taiwan, May 7-10, 2024, Proceedings, Part I
Autore Yang De-Nian
Edizione [1st ed.]
Pubbl/distr/stampa Singapore : , : Springer Singapore Pte. Limited, , 2024
Descrizione fisica 1 online resource (406 pages)
Altri autori (Persone) XieXing
TsengVincent S
PeiJian
HuangJen-Wei
LinJerry Chun-Wei
Collana Lecture Notes in Computer Science Series
ISBN 981-9722-42-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- General Chairs' Preface -- PC Chairs' Preface -- Organization -- Contents - Part I -- Anomaly and Outlier Detection -- Spatial-Temporal Transformer with Error-Restricted Variance Estimation for Time Series Anomaly Detection -- 1 Introduction -- 2 Related Work -- 3 Approach -- 3.1 Problem Formulation -- 3.2 Proposed Architecture -- 3.3 Error-Restricted Probability (ERP) Loss -- 3.4 Anomaly Score -- 4 Experiments -- 4.1 Dataset Description -- 4.2 Baseline Methods -- 4.3 Experimental Settings -- 4.4 Overall Results -- 4.5 Ablation Study -- 5 Conclusion -- References -- Multi-task Contrastive Learning for Anomaly Detection on Attributed Networks -- 1 Introduction -- 2 Problem Definition -- 3 The Proposed Framework -- 3.1 Subgraph Sampling Based Data Augmentation -- 3.2 Context Matching Contrastive Learning -- 3.3 Link Prediction Contrastive Learning -- 3.4 Model Training and Anomaly Score Inference -- 4 Experiments -- 4.1 Experimental Setup -- 4.2 Result and Analysis -- 4.3 Ablation Study -- 4.4 Parameter Study -- 5 Related Works -- 6 Conclusions -- References -- SATJiP: Spatial and Augmented Temporal Jigsaw Puzzles for Video Anomaly Detection -- 1 Introduction -- 2 Related Works -- 3 Problem Formulation: Frame-Level VAD -- 4 Proposal: SATJiP -- 4.1 Preliminary -- 4.2 Masked Temporal Jigsaw Puzzles (MTJiP) -- 5 Experiments -- 5.1 Datasets and Evaluation Metric -- 5.2 Implementation Details -- 5.3 Comparison in Detecting Accompanying Anomalies (AA) -- 5.4 Comparison in Detecting Diverse Video Anomalies -- 5.5 Ablation Study -- 5.6 VAD Examples -- 6 Conclusion -- References -- STL-ConvTransformer: Series Decomposition and Convolution-Infused Transformer Architecture in Multivariate Time Series Anomaly Detection -- 1 Introduction -- 2 Related Work -- 2.1 Prediction-Based Models -- 2.2 Reconstruction-Based Models.
2.3 Transformers for Time Series Analysis -- 3 Methodology -- 3.1 Problem Formulation -- 3.2 Overall Architecture -- 3.3 Data Preprocessing -- 3.4 Decomposition Block -- 3.5 Local-Transformer Encoder and Decoder -- 3.6 Loss Function and Anomaly Score -- 4 Experiments -- 5 Conclusion -- References -- TOPOMA: Time-Series Orthogonal Projection Operator with Moving Average for Interpretable and Training-Free Anomaly Detection -- 1 Introduction -- 2 Related Work -- 3 TOPOMA: Our Proposed Anomaly Detector -- 3.1 Problem Formulation -- 3.2 Moving Average of Orthogonal Projection Operators -- 3.3 Adaptive Choice of Anomaly Score Thresholds -- 3.4 Complexity Analysis -- 4 Results and Discussion -- 4.1 Synthetic Data -- 4.2 Real-World Data -- 5 Conclusion -- References -- Latent Space Correlation-Aware Autoencoder for Anomaly Detection in Skewed Data -- 1 Introduction -- 2 Related Work -- 3 Problem Formulation -- 3.1 Robust Hybrid Error with MD in Latent Space -- 3.2 Objective Function -- 4 Experiments -- 4.1 Datasets -- 4.2 Baseline Methods -- 4.3 Ablation Study -- 5 Hyperparameter Sensitivity -- 6 Conclusion -- References -- SeeM: A Shared Latent Variable Model for Unsupervised Multi-view Anomaly Detection -- 1 Introduction -- 2 Proposed Model for Multi-view Anomaly Detection -- 2.1 The SeeM Model and Its Inference -- 2.2 Complexity Analysis -- 2.3 Anomaly Score -- 3 Experiments -- 3.1 Datasets and Baselines -- 3.2 Multi-view Anomaly Detection Performance -- 3.3 Latent Dimension Analysis -- 3.4 Non-linear Projections -- 3.5 A Use Case with Real-World Multi-view Data -- 4 Related Work -- 5 Conclusion -- References -- Classification -- QWalkVec: Node Embedding by Quantum Walk -- 1 Introduction -- 2 Preliminaries -- 2.1 Notations -- 2.2 Quantum Walks on Graphs -- 3 Related Works -- 3.1 Problems -- 4 Proposed Method: QWalkVec -- 4.1 Algorithm -- 5 Evaluations.
5.1 Experimental Settings and Dataset -- 5.2 Overall Results -- 6 Conclusion -- References -- Human-Driven Active Verification for Efficient and Trustworthy Graph Classification -- 1 Introduction -- 2 Related Work -- 2.1 Human-in-the-loop Machine Learning -- 2.2 Deep Learning for Case-Based Reasoning -- 2.3 Interpretable Graph Neural Networks -- 3 Methodology -- 3.1 Problem Formulation and Framework Overview -- 3.2 Human-Compatible Representation Learning -- 3.3 Interpretable Predictor -- 3.4 Prediction Explanation -- 4 Experiments -- 4.1 Datasets and Baselines -- 4.2 Implementations and Configurations -- 4.3 Predictive Performance Comparison -- 4.4 Benefits of Human-AI Interactions -- 4.5 User Perception of Prediction Explanations -- 4.6 Is Instance-Level Feedback Helpful in Any Cases? -- 5 Discussions of Fairness and Ethical Issues -- 6 Conclusion and Future Work -- References -- SASBO: Sparse Attack via Stochastic Binary Optimization -- 1 Introduction -- 2 Related Work -- 3 Methods -- 3.1 Problem Definition -- 3.2 Sparse Adversarial Attack via Stochastic Binary Optimization -- 4 Experiments and Results -- 4.1 Non-targeted Attack -- 4.2 Targeted Attack -- 4.3 Visualization -- 5 Conclusion -- References -- LEMT: A Label Enhanced Multi-task Learning Framework for Malevolent Dialogue Response Detection -- 1 Introduction -- 2 Related Work -- 3 Method -- 3.1 Problem Definition -- 3.2 Overall Framework -- 3.3 Utterance Encoder -- 3.4 Malevolence Shift Detection -- 3.5 Hierarchy-Aware Label Encoder -- 3.6 Malevolence Detection in Dialogues -- 3.7 Multi-task Learning -- 4 Experiments -- 4.1 Datasets and Evaluation Metrics -- 4.2 Compared Baselines -- 4.3 Implementation Details -- 4.4 Main Results -- 4.5 Ablation Study -- 4.6 Analysis of Malevolence Shift Detection -- 4.7 Case Study -- 4.8 Analysis of LLMs -- 5 Conclusion -- References.
Two-Stage Knowledge Graph Completion Based on Semantic Features and High-Order Structural Features -- 1 Introduction -- 2 Preliminary -- 2.1 Knowledge Graph -- 2.2 Knowledge Graph Completion -- 2.3 Dynamic Graph Attention Variant GATv2 -- 3 Methodology -- 3.1 Structural Local Contexts Aggregation -- 3.2 High-Order Connected Contexts Aggregation -- 3.3 Decoder -- 4 Experiment -- 4.1 Datasets and Metrics -- 4.2 Results and Analysis -- 4.3 Ablation Study -- 5 Conclusions -- References -- Instance-Ambiguity Weighting for Multi-label Recognition with Limited Annotations -- 1 Introduction -- 2 Related Works -- 2.1 Multi-label Recognition with Full Annotations -- 2.2 Multi-label Recognition with Limited Annotations -- 3 Methodology -- 3.1 Problem Definition -- 3.2 Ambiguity-Aware Instance Weighting -- 3.3 Total Training Loss -- 4 Experiments -- 4.1 Experiment Settings -- 4.2 Results -- 4.3 Ablation Studies -- 4.4 Model Analysis -- 5 Conclusion -- References -- Chaotic Neural Oscillators with Deep Graph Neural Network for Node Classification -- 1 Introduction -- 1.1 Node Classification -- 1.2 Graph Neural Network (GNN) -- 1.3 Chaotic Neural Oscillator (CNO) -- 2 Methodology -- 3 Experiment -- 3.1 Datasets -- 3.2 Settings and Baselines -- 3.3 Results -- 3.4 Ablation Study -- 4 Conclusion -- References -- Adversarial Learning of Group and Individual Fair Representations -- 1 Introduction -- 2 Related Work -- 3 Preliminaries -- 4 Methodology -- 4.1 Problem Statement -- 4.2 Model -- 4.3 Theoretical Properties of Loss Functions -- 4.4 Optimization with Focal Loss -- 5 Experiments and Analysis -- 6 Conclusion -- References -- Class Ratio and Its Implications for Reproducibility and Performance in Record Linkage -- 1 Introduction -- 2 Methodology -- 2.1 Data Partitioning -- 2.2 Classification and Evaluation -- 3 Experimental Study -- 3.1 Datasets -- 3.2 Results.
4 Discussion and Recommendations -- 5 Conclusions and Future Work -- References -- Clustering -- Clustering-Friendly Representation Learning for Enhancing Salient Features -- 1 Introduction -- 2 Related Works -- 3 Proposed Method -- 3.1 The Framework of cIDFD -- 3.2 Loss for Background Feature Extraction -- 3.3 Loss for Target Feature Extraction -- 3.4 Two-Stage Learning -- 4 Experiments -- 4.1 Datasets -- 4.2 Comparison with Conventional Methods -- 4.3 Representation Distribution -- 4.4 Similarity Distribution -- 5 Conclusion -- References -- ImMC-CSFL: Imbalanced Multi-view Clustering Algorithm Based on Common-Specific Feature Learning -- 1 Introduction -- 1.1 Motivation -- 1.2 Contribution -- 2 Related Work -- 3 Imbalanced Multi-view Clustering Algorithm Based on Common-Specific Feature Learning (ImMC-CSFL) -- 3.1 Deep Feature Extraction Module -- 3.2 Common Information Learning Module -- 3.3 Specific Information Learning Module -- 3.4 Deep Multi-view Clustering Based on Common-Specific Feature Learning -- 4 Experiment -- 4.1 Experimental Datasets and Evaluation Criteria -- 4.2 Methods of Comparison -- 4.3 Experimental Results -- 5 Summary -- References -- Multivariate Beta Mixture Model: Probabilistic Clustering with Flexible Cluster Shapes -- 1 Introduction -- 2 Multivariate Beta Mixture Model -- 2.1 Multivariate Beta Distribution -- 2.2 MBMM Density Function and Generative Process -- 2.3 Parameter Learning for the MBMM -- 2.4 The Similarity Score Between Data Points -- 3 Experiments -- 3.1 Comparisons on the Synthetic Datasets -- 3.2 Comparison on the Real Datasets -- 3.3 Distance Between Data Points -- 4 Related Work -- 5 Discussion -- References -- AutoClues: Exploring Clustering Pipelines via AutoML and Diversification -- 1 Introduction -- 2 Related Works -- 3 AutoClues -- 3.1 Formalization -- 3.2 Implementation.
4 Benchmark Generation and Empirical Evaluation.
Record Nr. UNISA-996594167803316
Yang De-Nian  
Singapore : , : Springer Singapore Pte. Limited, , 2024
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Advances in Knowledge Discovery and Data Mining : 28th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2024, Taipei, Taiwan, May 7-10, 2024, Proceedings, Part IV
Advances in Knowledge Discovery and Data Mining : 28th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2024, Taipei, Taiwan, May 7-10, 2024, Proceedings, Part IV
Autore Yang De-Nian
Edizione [1st ed.]
Pubbl/distr/stampa Singapore : , : Springer Singapore Pte. Limited, , 2024
Descrizione fisica 1 online resource (380 pages)
Altri autori (Persone) XieXing
TsengVincent S
PeiJian
HuangJen-Wei
LinJerry Chun-Wei
Collana Lecture Notes in Computer Science Series
ISBN 981-9722-38-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996601563903316
Yang De-Nian  
Singapore : , : Springer Singapore Pte. Limited, , 2024
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Advances in Knowledge Discovery and Data Mining : 28th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2024, Taipei, Taiwan, May 7–10, 2024, Proceedings, Part I / / edited by De-Nian Yang, Xing Xie, Vincent S. Tseng, Jian Pei, Jen-Wei Huang, Jerry Chun-Wei Lin
Advances in Knowledge Discovery and Data Mining : 28th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2024, Taipei, Taiwan, May 7–10, 2024, Proceedings, Part I / / edited by De-Nian Yang, Xing Xie, Vincent S. Tseng, Jian Pei, Jen-Wei Huang, Jerry Chun-Wei Lin
Autore Yang De-Nian
Edizione [1st ed. 2024.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024
Descrizione fisica 1 online resource (406 pages)
Disciplina 006.3
Altri autori (Persone) XieXing
TsengVincent S
PeiJian
HuangJen-Wei
LinJerry Chun-Wei
Collana Lecture Notes in Artificial Intelligence
Soggetto topico Artificial intelligence
Algorithms
Education - Data processing
Computer science - Mathematics
Signal processing
Computer networks
Artificial Intelligence
Design and Analysis of Algorithms
Computers and Education
Mathematics of Computing
Signal, Speech and Image Processing
Computer Communication Networks
ISBN 981-9722-42-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- General Chairs' Preface -- PC Chairs' Preface -- Organization -- Contents - Part I -- Anomaly and Outlier Detection -- Spatial-Temporal Transformer with Error-Restricted Variance Estimation for Time Series Anomaly Detection -- 1 Introduction -- 2 Related Work -- 3 Approach -- 3.1 Problem Formulation -- 3.2 Proposed Architecture -- 3.3 Error-Restricted Probability (ERP) Loss -- 3.4 Anomaly Score -- 4 Experiments -- 4.1 Dataset Description -- 4.2 Baseline Methods -- 4.3 Experimental Settings -- 4.4 Overall Results -- 4.5 Ablation Study -- 5 Conclusion -- References -- Multi-task Contrastive Learning for Anomaly Detection on Attributed Networks -- 1 Introduction -- 2 Problem Definition -- 3 The Proposed Framework -- 3.1 Subgraph Sampling Based Data Augmentation -- 3.2 Context Matching Contrastive Learning -- 3.3 Link Prediction Contrastive Learning -- 3.4 Model Training and Anomaly Score Inference -- 4 Experiments -- 4.1 Experimental Setup -- 4.2 Result and Analysis -- 4.3 Ablation Study -- 4.4 Parameter Study -- 5 Related Works -- 6 Conclusions -- References -- SATJiP: Spatial and Augmented Temporal Jigsaw Puzzles for Video Anomaly Detection -- 1 Introduction -- 2 Related Works -- 3 Problem Formulation: Frame-Level VAD -- 4 Proposal: SATJiP -- 4.1 Preliminary -- 4.2 Masked Temporal Jigsaw Puzzles (MTJiP) -- 5 Experiments -- 5.1 Datasets and Evaluation Metric -- 5.2 Implementation Details -- 5.3 Comparison in Detecting Accompanying Anomalies (AA) -- 5.4 Comparison in Detecting Diverse Video Anomalies -- 5.5 Ablation Study -- 5.6 VAD Examples -- 6 Conclusion -- References -- STL-ConvTransformer: Series Decomposition and Convolution-Infused Transformer Architecture in Multivariate Time Series Anomaly Detection -- 1 Introduction -- 2 Related Work -- 2.1 Prediction-Based Models -- 2.2 Reconstruction-Based Models.
2.3 Transformers for Time Series Analysis -- 3 Methodology -- 3.1 Problem Formulation -- 3.2 Overall Architecture -- 3.3 Data Preprocessing -- 3.4 Decomposition Block -- 3.5 Local-Transformer Encoder and Decoder -- 3.6 Loss Function and Anomaly Score -- 4 Experiments -- 5 Conclusion -- References -- TOPOMA: Time-Series Orthogonal Projection Operator with Moving Average for Interpretable and Training-Free Anomaly Detection -- 1 Introduction -- 2 Related Work -- 3 TOPOMA: Our Proposed Anomaly Detector -- 3.1 Problem Formulation -- 3.2 Moving Average of Orthogonal Projection Operators -- 3.3 Adaptive Choice of Anomaly Score Thresholds -- 3.4 Complexity Analysis -- 4 Results and Discussion -- 4.1 Synthetic Data -- 4.2 Real-World Data -- 5 Conclusion -- References -- Latent Space Correlation-Aware Autoencoder for Anomaly Detection in Skewed Data -- 1 Introduction -- 2 Related Work -- 3 Problem Formulation -- 3.1 Robust Hybrid Error with MD in Latent Space -- 3.2 Objective Function -- 4 Experiments -- 4.1 Datasets -- 4.2 Baseline Methods -- 4.3 Ablation Study -- 5 Hyperparameter Sensitivity -- 6 Conclusion -- References -- SeeM: A Shared Latent Variable Model for Unsupervised Multi-view Anomaly Detection -- 1 Introduction -- 2 Proposed Model for Multi-view Anomaly Detection -- 2.1 The SeeM Model and Its Inference -- 2.2 Complexity Analysis -- 2.3 Anomaly Score -- 3 Experiments -- 3.1 Datasets and Baselines -- 3.2 Multi-view Anomaly Detection Performance -- 3.3 Latent Dimension Analysis -- 3.4 Non-linear Projections -- 3.5 A Use Case with Real-World Multi-view Data -- 4 Related Work -- 5 Conclusion -- References -- Classification -- QWalkVec: Node Embedding by Quantum Walk -- 1 Introduction -- 2 Preliminaries -- 2.1 Notations -- 2.2 Quantum Walks on Graphs -- 3 Related Works -- 3.1 Problems -- 4 Proposed Method: QWalkVec -- 4.1 Algorithm -- 5 Evaluations.
5.1 Experimental Settings and Dataset -- 5.2 Overall Results -- 6 Conclusion -- References -- Human-Driven Active Verification for Efficient and Trustworthy Graph Classification -- 1 Introduction -- 2 Related Work -- 2.1 Human-in-the-loop Machine Learning -- 2.2 Deep Learning for Case-Based Reasoning -- 2.3 Interpretable Graph Neural Networks -- 3 Methodology -- 3.1 Problem Formulation and Framework Overview -- 3.2 Human-Compatible Representation Learning -- 3.3 Interpretable Predictor -- 3.4 Prediction Explanation -- 4 Experiments -- 4.1 Datasets and Baselines -- 4.2 Implementations and Configurations -- 4.3 Predictive Performance Comparison -- 4.4 Benefits of Human-AI Interactions -- 4.5 User Perception of Prediction Explanations -- 4.6 Is Instance-Level Feedback Helpful in Any Cases? -- 5 Discussions of Fairness and Ethical Issues -- 6 Conclusion and Future Work -- References -- SASBO: Sparse Attack via Stochastic Binary Optimization -- 1 Introduction -- 2 Related Work -- 3 Methods -- 3.1 Problem Definition -- 3.2 Sparse Adversarial Attack via Stochastic Binary Optimization -- 4 Experiments and Results -- 4.1 Non-targeted Attack -- 4.2 Targeted Attack -- 4.3 Visualization -- 5 Conclusion -- References -- LEMT: A Label Enhanced Multi-task Learning Framework for Malevolent Dialogue Response Detection -- 1 Introduction -- 2 Related Work -- 3 Method -- 3.1 Problem Definition -- 3.2 Overall Framework -- 3.3 Utterance Encoder -- 3.4 Malevolence Shift Detection -- 3.5 Hierarchy-Aware Label Encoder -- 3.6 Malevolence Detection in Dialogues -- 3.7 Multi-task Learning -- 4 Experiments -- 4.1 Datasets and Evaluation Metrics -- 4.2 Compared Baselines -- 4.3 Implementation Details -- 4.4 Main Results -- 4.5 Ablation Study -- 4.6 Analysis of Malevolence Shift Detection -- 4.7 Case Study -- 4.8 Analysis of LLMs -- 5 Conclusion -- References.
Two-Stage Knowledge Graph Completion Based on Semantic Features and High-Order Structural Features -- 1 Introduction -- 2 Preliminary -- 2.1 Knowledge Graph -- 2.2 Knowledge Graph Completion -- 2.3 Dynamic Graph Attention Variant GATv2 -- 3 Methodology -- 3.1 Structural Local Contexts Aggregation -- 3.2 High-Order Connected Contexts Aggregation -- 3.3 Decoder -- 4 Experiment -- 4.1 Datasets and Metrics -- 4.2 Results and Analysis -- 4.3 Ablation Study -- 5 Conclusions -- References -- Instance-Ambiguity Weighting for Multi-label Recognition with Limited Annotations -- 1 Introduction -- 2 Related Works -- 2.1 Multi-label Recognition with Full Annotations -- 2.2 Multi-label Recognition with Limited Annotations -- 3 Methodology -- 3.1 Problem Definition -- 3.2 Ambiguity-Aware Instance Weighting -- 3.3 Total Training Loss -- 4 Experiments -- 4.1 Experiment Settings -- 4.2 Results -- 4.3 Ablation Studies -- 4.4 Model Analysis -- 5 Conclusion -- References -- Chaotic Neural Oscillators with Deep Graph Neural Network for Node Classification -- 1 Introduction -- 1.1 Node Classification -- 1.2 Graph Neural Network (GNN) -- 1.3 Chaotic Neural Oscillator (CNO) -- 2 Methodology -- 3 Experiment -- 3.1 Datasets -- 3.2 Settings and Baselines -- 3.3 Results -- 3.4 Ablation Study -- 4 Conclusion -- References -- Adversarial Learning of Group and Individual Fair Representations -- 1 Introduction -- 2 Related Work -- 3 Preliminaries -- 4 Methodology -- 4.1 Problem Statement -- 4.2 Model -- 4.3 Theoretical Properties of Loss Functions -- 4.4 Optimization with Focal Loss -- 5 Experiments and Analysis -- 6 Conclusion -- References -- Class Ratio and Its Implications for Reproducibility and Performance in Record Linkage -- 1 Introduction -- 2 Methodology -- 2.1 Data Partitioning -- 2.2 Classification and Evaluation -- 3 Experimental Study -- 3.1 Datasets -- 3.2 Results.
4 Discussion and Recommendations -- 5 Conclusions and Future Work -- References -- Clustering -- Clustering-Friendly Representation Learning for Enhancing Salient Features -- 1 Introduction -- 2 Related Works -- 3 Proposed Method -- 3.1 The Framework of cIDFD -- 3.2 Loss for Background Feature Extraction -- 3.3 Loss for Target Feature Extraction -- 3.4 Two-Stage Learning -- 4 Experiments -- 4.1 Datasets -- 4.2 Comparison with Conventional Methods -- 4.3 Representation Distribution -- 4.4 Similarity Distribution -- 5 Conclusion -- References -- ImMC-CSFL: Imbalanced Multi-view Clustering Algorithm Based on Common-Specific Feature Learning -- 1 Introduction -- 1.1 Motivation -- 1.2 Contribution -- 2 Related Work -- 3 Imbalanced Multi-view Clustering Algorithm Based on Common-Specific Feature Learning (ImMC-CSFL) -- 3.1 Deep Feature Extraction Module -- 3.2 Common Information Learning Module -- 3.3 Specific Information Learning Module -- 3.4 Deep Multi-view Clustering Based on Common-Specific Feature Learning -- 4 Experiment -- 4.1 Experimental Datasets and Evaluation Criteria -- 4.2 Methods of Comparison -- 4.3 Experimental Results -- 5 Summary -- References -- Multivariate Beta Mixture Model: Probabilistic Clustering with Flexible Cluster Shapes -- 1 Introduction -- 2 Multivariate Beta Mixture Model -- 2.1 Multivariate Beta Distribution -- 2.2 MBMM Density Function and Generative Process -- 2.3 Parameter Learning for the MBMM -- 2.4 The Similarity Score Between Data Points -- 3 Experiments -- 3.1 Comparisons on the Synthetic Datasets -- 3.2 Comparison on the Real Datasets -- 3.3 Distance Between Data Points -- 4 Related Work -- 5 Discussion -- References -- AutoClues: Exploring Clustering Pipelines via AutoML and Diversification -- 1 Introduction -- 2 Related Works -- 3 AutoClues -- 3.1 Formalization -- 3.2 Implementation.
4 Benchmark Generation and Empirical Evaluation.
Record Nr. UNINA-9910851982903321
Yang De-Nian  
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advances in Knowledge Discovery and Data Mining : 28th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2024, Taipei, Taiwan, May 7–10, 2024, Proceedings, Part VI / / edited by De-Nian Yang, Xing Xie, Vincent S. Tseng, Jian Pei, Jen-Wei Huang, Jerry Chun-Wei Lin
Advances in Knowledge Discovery and Data Mining : 28th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2024, Taipei, Taiwan, May 7–10, 2024, Proceedings, Part VI / / edited by De-Nian Yang, Xing Xie, Vincent S. Tseng, Jian Pei, Jen-Wei Huang, Jerry Chun-Wei Lin
Autore Yang De-Nian
Edizione [1st ed. 2024.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024
Descrizione fisica 1 online resource (329 pages)
Disciplina 006.3
Altri autori (Persone) XieXing
TsengVincent S
PeiJian
HuangJen-Wei
LinJerry Chun-Wei
Collana Lecture Notes in Artificial Intelligence
Soggetto topico Artificial intelligence
Algorithms
Education - Data processing
Computer science - Mathematics
Signal processing
Computer networks
Artificial Intelligence
Design and Analysis of Algorithms
Computers and Education
Mathematics of Computing
Signal, Speech and Image Processing
Computer Communication Networks
ISBN 981-9722-66-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- General Chairs' Preface -- PC Chairs' Preface -- Organization -- Contents - Part VI -- Scientific Data -- FR3LS: A Forecasting Model with Robust and Reduced Redundancy Latent Series -- 1 Introduction -- 2 Related Work -- 3 Problem Setup -- 4 Model Architecture -- 4.1 Temporal Contextual Consistency -- 4.2 Non-contrastive Representations Learning -- 4.3 Deterministic Forecasting -- 4.4 Probabilistic Forecasting -- 4.5 End-to-End Training -- 5 Experiments -- 5.1 Experimental Results -- 5.2 Visualization of Latent and Original Series Forecasts -- 5.3 Further Experimental Setup Details -- 6 Conclusion -- References -- Knowledge-Infused Optimization for Parameter Selection in Numerical Simulations -- 1 Introduction -- 2 Preliminaries on Numerical Simulations -- 3 Identification and Analysis of Relevant Metadata -- 4 Efficient Metadata Capture for Parameter Optimization -- 4.1 Early Termination of Farming Runs -- 4.2 PROBE: Probing Specific Parameter Combinations -- 5 Experimental Evaluation -- 5.1 Quality of Parameter Optimization Using PROBE -- 5.2 Efficiency Evaluation -- 5.3 Reuse of Metadata Acquired Through PROBE -- 5.4 Generalization to Other Model Problems and Schemes -- 6 Conclusion and Outlook -- References -- Material Microstructure Design Using VAE-Regression with a Multimodal Prior -- 1 Introduction -- 2 Methodology -- 3 Related Work -- 4 Experimental Results -- 5 Summary and Conclusions -- References -- A Weighted Cross-Modal Feature Aggregation Network for Rumor Detection -- 1 Introduction -- 2 Related Work -- 2.1 Rumor Detection -- 2.2 Multimodal Alignment -- 3 Methodology -- 3.1 Overview of WCAN -- 3.2 Feature Extraction -- 3.3 Weighted Cross-Modal Aggregation Module -- 3.4 Multimodal Feature Fusion -- 3.5 Objective Function -- 4 Experiments -- 4.1 Datasets -- 4.2 Baselines -- 4.3 Ablation Experiment.
4.4 Hyper-parameter Analysis -- 4.5 Visualization on the Representations -- 4.6 Case Study -- 5 Conclusions -- References -- Texts, Web, Social Network -- Quantifying Opinion Rejection: A Method to Detect Social Media Echo Chambers -- 1 Introduction -- 2 Related Work -- 3 Preliminaries -- 4 Echo Chamber Detection in Signed Networks -- 5 SEcho Method -- 5.1 SEcho Metric -- 5.2 Greedy Optimisation -- 6 Experiments -- 7 Conclusion -- References -- KiProL: A Knowledge-Injected Prompt Learning Framework for Language Generation -- 1 Introduction -- 2 Methodology -- 2.1 Problem Statement -- 2.2 Knowledge-Injected Prompt Learning Generation -- 2.3 Training and Inference -- 3 Experiments -- 3.1 Datasets -- 3.2 Settings -- 3.3 Automatic Evaluation -- 3.4 Human Annotation -- 3.5 Ablation Study -- 3.6 In-Depth Analysis -- 3.7 Case Study -- 4 Conclusion -- References -- GViG: Generative Visual Grounding Using Prompt-Based Language Modeling for Visual Question Answering -- 1 Introduction -- 2 Related Work -- 2.1 Pix2Seq Framework -- 2.2 Prompt Tuning -- 3 Methodology -- 3.1 Prompt Tuning Module -- 3.2 VG Module -- 3.3 Conditional Trie-Based Search Algorithm (CTS) -- 4 Results -- 4.1 Dataset Description -- 4.2 Results on WSDM 2023 Toloka VQA Dataset Benchmark -- 5 Discussion -- 5.1 Prompt Study -- 5.2 Interpretable Attention -- 6 Conclusion -- References -- Aspect-Based Fake News Detection -- 1 Introduction -- 2 Related Work -- 3 Methodology -- 3.1 Problem Definition and Model Overview -- 3.2 Aspect Learning and Extraction -- 3.3 News Article Classification -- 4 Experiments -- 4.1 Datasets -- 4.2 Experimental Settings -- 4.3 Evaluation -- 5 Analysing the Effect of Aspects Across Topics -- 6 Discussion and Future Work -- 7 Conclusion -- References -- DQAC: Detoxifying Query Auto-completion with Adapters -- 1 Introduction -- 2 Related Work -- 3 Methodology.
3.1 QDetoxify: Toxicity Classifier for Search Queries -- 3.2 The DQAC Model -- 4 Experimental Setup -- 5 Results and Analyses -- 6 Conclusions -- References -- Graph Neural Network Approach to Semantic Type Detection in Tables -- 1 Introduction -- 2 Related Works -- 3 Problem Definition -- 4 GAIT -- 4.1 Single-Column Prediction -- 4.2 Graph-Based Prediction -- 4.3 Overall Prediction -- 5 Evaluation -- 5.1 Evaluation Method -- 5.2 Results -- 6 Conclusion -- References -- TCGNN: Text-Clustering Graph Neural Networks for Fake News Detection on Social Media -- 1 Introduction -- 2 Related Work -- 3 The Proposed TCGNN Method -- 3.1 Text-Clustering Graph Construction -- 3.2 Model Training -- 4 Experiments -- 5 Conclusions and Discussion -- References -- Exploiting Adaptive Contextual Masking for Aspect-Based Sentiment Analysis -- 1 Introduction -- 2 Related Work -- 3 Methodology -- 3.1 Problem Formulation and Motivation -- 3.2 Standalone ABSA Tasks -- 3.3 Adaptive Contextual Threshold Masking (ACTM) -- 3.4 Adaptive Attention Masking (AAM) -- 3.5 Adaptive Mask Over Masking (AMOM) -- 3.6 Training Procedure for ATE and ASC -- 4 Experiments and Results -- 5 Conclusion -- References -- An Automated Approach for Generating Conceptual Riddles -- 1 Introduction -- 2 Related Work -- 3 Methodology -- 3.1 Triples Creator -- 3.2 Properties Classifier -- 3.3 Generator -- 3.4 Validator -- 4 Evaluation and Results -- 5 Conclusion and Future Work -- References -- Time-Series and Streaming Data -- DiffFind: Discovering Differential Equations from Time Series -- 1 Introduction -- 2 Background and Related Work -- 2.1 Related Work -- 2.2 Background - Genetic Algorithms for Architecture Search -- 3 Proposed Method: DiffFind -- 4 Experiments -- 4.1 Q1 - DiffFind is Effective -- 4.2 Q2 - DiffFind is Explainable -- 4.3 Q3 - DiffFind is Scalable -- 5 Conclusions -- References.
DEAL: Data-Efficient Active Learning for Regression Under Drift -- 1 Introduction -- 2 Related Work -- 3 Problem Statement and Notation -- 4 Our Method: DEAL -- 4.1 The Adapted Stream-Based AL Cycle -- 4.2 Our Drift-Aware Estimation Model -- 5 Experimental Design -- 5.1 Baselines -- 5.2 Evaluation Data -- 5.3 Evaluation Metrics -- 6 Evaluation -- 6.1 Comparison of DEAL Against Baselines -- 6.2 Impact of the User-Required Error Threshold -- 7 Conclusion -- References -- Evolving Super Graph Neural Networks for Large-Scale Time-Series Forecasting -- 1 Introduction -- 2 Related Models -- 3 Evolving Super Graph Neural Networks -- 3.1 Preliminary Notations -- 3.2 Super Graph Construction -- 4 Diffusion on Evolving Super Graphs -- 4.1 Predictor -- 5 Experiments on Large-Scale Datasets -- 5.1 Forecasting Result and Analysis -- 5.2 Runtime and Space Usage Analysis -- 5.3 Ablation Study -- 6 Conclusion -- References -- Unlearnable Examples for Time Series -- 1 Introduction -- 2 Related Work -- 2.1 Data Poisoning -- 2.2 Adversarial Attack -- 2.3 Unlearnable Examples -- 3 Error-Minimizing Noise for Time Series -- 3.1 Objective -- 3.2 Threat Model -- 3.3 Challenges -- 3.4 Problem Formulation -- 3.5 A Straightforward Baseline Approach -- 3.6 Controllable Noise on Partial Time Series Samples -- 4 Experiments -- 4.1 Experiment Setup -- 4.2 Against Classification Models -- 4.3 Against Generative Models -- 5 Conclusion -- References -- Learning Disentangled Task-Related Representation for Time Series -- 1 Introduction -- 2 Related Work -- 3 The Proposed Method -- 3.1 Overview -- 3.2 Task-Relevant Feature Disentangled -- 3.3 Task-Adaptive Augmentation Selection -- 4 Experiments and Discussions -- 4.1 Datasets and Implementation Details -- 4.2 Ablation Analysis -- 4.3 Results on Classification Tasks -- 4.4 Results on Forecasting Tasks -- 4.5 Visualization Analysis.
5 Conclusion -- References -- A Multi-view Feature Construction and Multi-Encoder-Decoder Transformer Architecture for Time Series Classification -- 1 Introduction -- 2 Related Works -- 3 Problem Formulation -- 4 Methodology -- 4.1 Feature Construction -- 4.2 Multi-view Representation -- 4.3 Multi-Encoder-Decoder Transformer (MEDT) Classification -- 5 Experiments -- 5.1 Experiments Using Multivariate Time Series Data Benchmarks -- 5.2 Experiment Using a Real-World Physical Activities Dataset -- 6 Conclusion -- References -- Kernel Representation Learning with Dynamic Regime Discovery for Time Series Forecasting -- 1 Introduction -- 2 Related Work -- 3 Preliminaries -- 3.1 Key Concepts -- 3.2 Self-representation Learning in Time Series -- 3.3 Kernel Trick for Modeling Time Series -- 4 Proposed Method -- 4.1 Kernel Representation Learning: Modeling Regime Behavior -- 4.2 Forecasting -- 5 Experiments -- 5.1 Data -- 5.2 Experimental Setup and Evaluation -- 5.3 Regime Identification -- 5.4 Benchmark Comparison -- 5.5 Ablation Study -- 6 Conclusion -- References -- Hyperparameter Tuning MLP's for Probabilistic Time Series Forecasting -- 1 Introduction -- 2 Problem Statement -- 3 MLPs for Time Series Forecasting -- 3.1 Nlinear Model -- 4 Hyperparameters -- 4.1 Time Series Specific Configuration -- 4.2 Training Specific Configurations -- 4.3 TSBench-Metadataset -- 5 Experimental Setup -- 6 Results -- 7 Conclusion -- References -- Efficient and Accurate Similarity-Aware Graph Neural Network for Semi-supervised Time Series Classification -- 1 Introduction -- 2 Related Work -- 2.1 Graph-Based Time Series Classification -- 2.2 Lower Bound of DTW -- 3 Problem Formulation -- 4 Methodology -- 4.1 Batch Sampling -- 4.2 LB_Keogh Graph Construction -- 4.3 Graph Convolution and Classification -- 4.4 Advantages of Our Model -- 5 Experimental Evaluation.
5.1 Comparing with 1NN-DTW.
Record Nr. UNINA-9910851993803321
Yang De-Nian  
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advances in Knowledge Discovery and Data Mining : 28th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2024, Taipei, Taiwan, May 7–10, 2024, Proceedings, Part IV / / edited by De-Nian Yang, Xing Xie, Vincent S. Tseng, Jian Pei, Jen-Wei Huang, Jerry Chun-Wei Lin
Advances in Knowledge Discovery and Data Mining : 28th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2024, Taipei, Taiwan, May 7–10, 2024, Proceedings, Part IV / / edited by De-Nian Yang, Xing Xie, Vincent S. Tseng, Jian Pei, Jen-Wei Huang, Jerry Chun-Wei Lin
Autore Yang De-Nian
Edizione [1st ed. 2024.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024
Descrizione fisica 1 online resource (380 pages)
Disciplina 006.3
Altri autori (Persone) XieXing
TsengVincent S
PeiJian
HuangJen-Wei
LinJerry Chun-Wei
Collana Lecture Notes in Artificial Intelligence
Soggetto topico Artificial intelligence
Algorithms
Education - Data processing
Computer science - Mathematics
Signal processing
Computer networks
Artificial Intelligence
Design and Analysis of Algorithms
Computers and Education
Mathematics of Computing
Signal, Speech and Image Processing
Computer Communication Networks
ISBN 981-9722-38-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- General Chairs' Preface -- PC Chairs' Preface -- Organization -- Contents - Part IV -- Financial Data -- Look Around! A Neighbor Relation Graph Learning Framework for Real Estate Appraisal -- 1 Introduction -- 2 Preliminaries -- 3 Approach -- 3.1 Graph Construction -- 3.2 Transaction Encoding -- 3.3 Neighbor Aggregator -- 3.4 Community Aggregator -- 3.5 Dynamic Adaptor -- 4 Experiments -- 4.1 Experimental Setup -- 4.2 Overall Performance -- 4.3 Ablation Study -- 5 Conclusion -- References -- Multi-time Window Ensemble and Maximization of Expected Return for Stock Movement Prediction -- 1 Introduction -- 2 Related Works -- 3 Proposed Model -- 3.1 Problem Formulation -- 3.2 Multi-time Window Ensemble Classifier -- 3.3 Base Learner -- 3.4 Proposed Loss Function for Base Learner -- 4 Experiments -- 4.1 Experimental Setup -- 4.2 Predictive Performance Comparison -- 4.3 Trading Performance Comparison -- 4.4 Ablation Study -- 4.5 Visualization of Proposed Loss Function -- 5 Conclusion -- References -- MOT: A Mixture of Actors Reinforcement Learning Method by Optimal Transport for Algorithmic Trading -- 1 Introduction -- 2 Problem Formulation -- 3 Methodology -- 3.1 Imitation Learning -- 3.2 Pretrain Module -- 3.3 Multiple Actors -- 3.4 Optimal Transport Regularization -- 4 Experiments -- 4.1 Dataset -- 4.2 Baselines, Evaluation Metrics and Hyperparameters -- 4.3 Experimental Results -- 4.4 Ablation Study -- 5 Related Work -- 6 Conclusion -- References -- Agent-Based Simulation of Decision-Making Under Uncertainty to Study Financial Precarity -- 1 Introduction -- 2 Background: Modeling Consumption -- 2.1 Capturing Uncertainty -- 3 The Framework: Introducing Real Constraints -- 3.1 Background: Modeling Ruin -- 3.2 Our New Model -- 4 Simulation Study: Precarity -- 4.1 Long Term Precarity -- 4.2 Factors Contributing to Precarity.
5 Simulation Study: Interventions -- 6 Related Work -- 7 Conclusions -- References -- Information Retrieval and Search -- Semantic Completion: Enhancing Image-Text Retrieval with Information Extraction and Compression -- 1 Introduction -- 2 Related Work -- 2.1 Dual-Stream Structure -- 2.2 Single-Stream Structure -- 3 Methodology -- 3.1 Overview -- 3.2 Information Extraction and Compression (IEC) -- 3.3 Training Tasks -- 4 Experiments -- 4.1 Experimental Settings -- 4.2 Comparison to Baseline -- 4.3 Ablation Study -- 5 Conclusion -- References -- Fast Edit Distance Prediction for All Pairs of Sequences in Very Large NGS Datasets -- 1 Introduction -- 2 Related Works -- 3 Basic Concepts -- 3.1 Preliminary -- 3.2 Key Ideas -- 3.3 Selecting the Reference Sequences -- 4 Predicting the Edit Distance -- 5 Edit Distance Prediction from Non-matching Sub-sequences -- 5.1 Differences of Distances with Respect to Pairs of Letters -- 5.2 Computational Complexity -- 6 Results and Discussions -- 6.1 Datasets -- 6.2 Selecting K-Mer Length -- 6.3 Comparison of the Proposed Strategies -- 6.4 Edit Distance Prediction -- 6.5 Hierarchical Clustering -- 7 Conclusion -- References -- MixCL: Mixed Contrastive Learning for Relation Extraction -- 1 Introduction -- 2 Mixed Contrastive Learning -- 2.1 Neural Relation Extraction Baseline Model -- 2.2 Entity Centralized Contrastive Learning for Relation Extraction -- 2.3 Mixed Contrastive Learning for Relation Extraction -- 3 Experiments -- 3.1 Datasets and Comparison Models -- 3.2 Main Results -- 4 Analysis -- 4.1 Metric of Quality of Negative Examples -- 4.2 Why Does MixCL Work? -- 5 Related Work -- 5.1 Neural Relation Extraction -- 5.2 Contrastive Learning -- 6 Conclusion -- References -- Decomposing Relational Triple Extraction with Large Language Models for Better Generalization on Unseen Data -- 1 Introduction.
2 Methodology -- 2.1 Problem Formalization -- 2.2 Sub-task 1: Relation Extraction -- 2.3 Sub-task 2: Entity Extraction -- 2.4 Sub-task 3: Triple Filtering -- 3 Experiments -- 3.1 Datasets -- 3.2 Compared Methods and Evaluation Metrics -- 3.3 Overall Performance -- 3.4 Model Generalization Evaluation -- 3.5 Ablation Studies -- 4 Related Work -- 5 Conclusion -- References -- Multi-Query Person Search with Transformers -- 1 Introduction -- 2 Method -- 2.1 Multi-Query Decoder -- 2.2 Detection and Identification Losses -- 3 Experiments -- 3.1 Datasets -- 3.2 Evaluation Metrics -- 3.3 Implementation Details -- 3.4 Comparison to the State-of-the-Art Approaches -- 3.5 Model Analysis -- 4 Conclusion -- References -- BioReX: Biomarker Information Extraction Inspired by Aspect-Based Sentiment Analysis -- 1 Introduction -- 2 Related Work -- 3 Methodology -- 3.1 Biomarker Extraction (BE) -- 3.2 Result Association (RA) -- 4 Experiments -- 4.1 Experiment Setting -- 4.2 Results and Analysis -- 5 Conclusions -- References -- IR Embedding Fairness Inspection via Contrastive Learning and Human-AI Collaborative Intelligence -- 1 Introduction -- 2 Related Works -- 3 Methodology -- 3.1 Model Overview -- 3.2 GP Based Contrastive Learning -- 4 Experiments and Deployment -- 4.1 Implementation -- 4.2 Offline Evaluation -- 4.3 Online A/B Testing -- 5 Conclusion -- References -- SemPool: Simple, Robust, and Interpretable KG Pooling for Enhancing Language Models -- 1 Introduction -- 2 Related Work -- 3 Problem Statement and Preliminaries -- 4 Empirical Findings on Robustness -- 5 SemPool: Semantic Graph Pooling -- 5.1 KG Initialization -- 5.2 Pooling -- 5.3 KG Grounding -- 6 Experimental Setting -- 7 Results -- 7.1 Main Results -- 7.2 Ablation Studies and Analysis -- 8 Conclusions -- References -- Medical and Biological Data.
Spatial Gene Expression Prediction Using Multi-Neighborhood Network with Reconstructing Attention -- 1 Introduction -- 2 Related Work -- 2.1 Gene Expression Prediction -- 2.2 Vision Transformer (ViT) -- 3 Method -- 3.1 Dual-Scale Attention -- 3.2 Reconstructing Attention -- 3.3 Transformer Block -- 4 Experiment -- 4.1 Datasets -- 4.2 Experiment Setup -- 5 Results and Discussion -- 5.1 Baseline Experiments for Multi-Neighborhood Network -- 5.2 Influence of Number of Neighborhoods -- 5.3 Influence of Attention Mechanisms -- 6 Conclusion -- References -- APFL: Active-Passive Forgery Localization for Medical Images -- 1 Introduction -- 2 Related Work -- 2.1 Active Forgery Localization -- 2.2 Passive Forgery Localization -- 3 Methodology -- 3.1 Active Fuzzy Localization with Reversible Watermarking -- 3.2 Passive Precise Localization with Lightweight KDU-Net -- 4 Experiments -- 4.1 Settings -- 4.2 Comparison Results -- 4.3 Robustness Evaluation -- 4.4 Hyperparameter Evaluation -- 4.5 Ablation Study -- 5 Conclusion -- References -- A Universal Non-parametric Approach for Improved Molecular Sequence Analysis -- 1 Introduction -- 2 Related Work -- 3 Proposed Approach -- 3.1 Compression Methods -- 3.2 Problem Formulation -- 3.3 Our Algorithm -- 3.4 Distance Matrix Symmetry -- 3.5 Kernel Matrix Computation -- 3.6 Experimental Setup -- 3.7 Justification of Employing the Kernel Matrix -- 4 Results and Discussion -- 5 Conclusion -- References -- Dynamic GNNs for Precise Seizure Detection and Classification from EEG Data -- 1 Introduction -- 2 Related Work -- 3 Methodology: NeuroGNN -- 3.1 Node Features Generation -- 3.2 Adjacency Matrix Generation -- 3.3 Prediction Using the Generated NeuroGraph -- 3.4 Pretraining -- 4 Experiments -- 4.1 Experimental Setup -- 4.2 Results -- 4.3 Ablation Study -- 4.4 Analysis of Graph Embeddings.
4.5 Handling Scarce Training Data -- 5 Conclusion -- References -- A Novel Population Graph Neural Network Based on Functional Connectivity for Mental Disorders Detection -- 1 Introduction -- 2 Methods -- 2.1 Brain Connectomic Graph -- 2.2 Heterogeneous Population Graph -- 3 Dataset and Experimental Evaluation -- 3.1 Dataset and Experimental Setup -- 3.2 Cross-Validation -- 3.3 Ablation Experiment and Parameter Sensitivity Analysis -- 3.4 Interpretability Analysis -- 4 Conclusion -- References -- Weighted Chaos Game Representation for Molecular Sequence Classification -- 1 Introduction -- 2 Related Work -- 3 Proposed Approach -- 3.1 Vision DL Models -- 4 Experimental Evaluation -- 4.1 Baselines Models: -- 5 Results and Discussion -- 6 Conclusion -- References -- Robust Influence-Based Training Methods for Noisy Brain MRI -- 1 Introduction -- 2 Related Work -- 3 Preliminaries -- 3.1 Influence Function on Single Validation Point -- 3.2 Influence Function on Validation Group -- 4 Influence-Based Sample Reweighing -- 4.1 Framework -- 4.2 Calculating Sample Weights -- 5 Influence-Based Sample Perturbation -- 5.1 Framework -- 5.2 Selecting Influential Samples -- 5.3 Adding Influence-Based Perturbation -- 6 Experiments -- 6.1 Evaluation Setup -- 6.2 Proposed Methods and Baselines -- 6.3 Results -- 7 Conclusion -- References -- Co-ReaSON: EEG-based Onset Detection of Focal Epileptic Seizures with Multimodal Feature Representations -- 1 Introduction -- 2 Problem Definition -- 3 The Co-ReaSON Approach -- 3.1 Data Preprocessing -- 3.2 Feature Extraction -- 3.3 Co-ReaSON Predictive Model -- 4 Evaluation Setup -- 5 Evaluation Results -- 6 Related Work -- 7 Conclusion -- References -- A Data-Driven Approach for Building a Cardiovascular Disease Risk Prediction System -- 1 Introduction -- 2 The Proposed AutoML System -- 3 Experiment -- 3.1 The Dataset.
3.2 Evaluation Metrics.
Record Nr. UNINA-9910855370003321
Yang De-Nian  
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advances in Knowledge Discovery and Data Mining : 28th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2024, Taipei, Taiwan, May 7–10, 2024, Proceedings, Part V / / edited by De-Nian Yang, Xing Xie, Vincent S. Tseng, Jian Pei, Jen-Wei Huang, Jerry Chun-Wei Lin
Advances in Knowledge Discovery and Data Mining : 28th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2024, Taipei, Taiwan, May 7–10, 2024, Proceedings, Part V / / edited by De-Nian Yang, Xing Xie, Vincent S. Tseng, Jian Pei, Jen-Wei Huang, Jerry Chun-Wei Lin
Autore Yang De-Nian
Edizione [1st ed. 2024.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024
Descrizione fisica 1 online resource (431 pages)
Disciplina 006.3
Altri autori (Persone) XieXing
TsengVincent S
PeiJian
HuangJen-Wei
LinJerry Chun-Wei
Collana Lecture Notes in Artificial Intelligence
Soggetto topico Artificial intelligence
Algorithms
Education - Data processing
Computer science - Mathematics
Signal processing
Computer networks
Artificial Intelligence
Design and Analysis of Algorithms
Computers and Education
Mathematics of Computing
Signal, Speech and Image Processing
Computer Communication Networks
ISBN 981-9722-62-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- General Chairs' Preface -- PC Chairs' Preface -- Organization -- Contents - Part V -- Multimedia and Multimodal Data -- Re-thinking Human Activity Recognition with Hierarchy-Aware Label Relationship Modeling -- 1 Introduction -- 2 Related Work -- 2.1 Human Activity Recognition (HAR) -- 2.2 Hierarchical Label Modeling -- 3 Problem Formulation -- 4 Our Proposals -- 4.1 Hierarchy-Aware Label Encoding -- 4.2 Activity Data Encoding -- 4.3 Label-Data Joint Embedding Learning -- 5 Experiments -- 5.1 Experimental Settings -- 5.2 Experimental Results -- 5.3 Ablation Study -- 6 Discussions and Conclusion -- References -- Geometrically-Aware Dual Transformer Encoding Visual and Textual Features for Image Captioning -- 1 Introduction -- 2 Related Works -- 3 Proposed Approach -- 3.1 Features Extractor -- 3.2 Caption Generator -- 3.3 Attention Block -- 3.4 Training and Objectives -- 4 Experiments -- 4.1 Experiments Setup -- 4.2 Experiment Result -- 5 Conclusions -- References -- MHDF: Multi-source Heterogeneous Data Progressive Fusion for Fake News Detection -- 1 Introduction -- 2 Related Work -- 3 MHDF Model -- 3.1 Model Overview -- 3.2 Multi-source Heterogeneous Data Amplification -- 3.3 News Textual Feature Fusion -- 3.4 News Visual Feature Fusion -- 3.5 Sentiment Feature Extractor -- 3.6 Feature Integration Classifier -- 4 Experiments -- 4.1 Dataset -- 4.2 Experimental Settings -- 4.3 Performance Comparison -- 4.4 Ablation Experiments and Validity Verification -- 4.5 Conclusions -- References -- Accurate Semi-supervised Automatic Speech Recognition via Multi-hypotheses-Based Curriculum Learning -- 1 Introduction -- 2 Related Works -- 2.1 Automatic Speech Recognition Methods -- 2.2 Connectionist Temporal Classification (CTC) Loss -- 3 Proposed Method -- 3.1 Multiple Hypotheses for Unlabeled Instances.
3.2 Training ASR Model with Multiple Hypotheses -- 3.3 Curriculum Learning -- 3.4 Theoretical Analysis -- 4 Experiments -- 4.1 Experimental Settings -- 4.2 Transcription Performance (Q1) -- 4.3 Speed of Convergence (Q2) -- 4.4 Ablation Study (Q3) -- 5 Conclusions -- References -- MM-PhyQA: Multimodal Physics Question-Answering with Multi-image CoT Prompting -- 1 Introduction -- 2 Related Works -- 2.1 Available Datasets -- 2.2 Large Multimodal Models and Chain-of-Thought -- 3 Novel Dataset -- 3.1 Original Dataset Creation -- 3.2 Data Augmentation Procedure -- 3.3 Chain of Thought Variant -- 3.4 MM-PhyQA Dataset Topics -- 4 Methodology -- 4.1 Multi-image Chain-of-Thought (MI-CoT) -- 5 Experiments -- 5.1 Models -- 6 Results and Discussion -- 6.1 Model Performance -- 6.2 Zero Shot Prompting Vs Supervised Fine-Tuning -- 6.3 Effect of Chain of Thought Prompting -- 6.4 Error Analysis -- 7 Conclusion -- References -- Adversarial Text Purification: A Large Language Model Approach for Defense -- 1 Introduction -- 2 Related Work -- 3 Background -- 3.1 Large Language Models -- 3.2 Adversarial Text Purification -- 4 LLM-Guided Adversarial Text Purification -- 5 Experiments -- 5.1 Experimental Setting -- 5.2 Results and Discussion -- 6 Conclusion -- References -- lil'HDoC: An Algorithm for Good Arm Identification Under Small Threshold Gap -- 1 Introduction -- 2 Background -- 2.1 Good Arm Identification -- 3 Problem Setting -- 4 Preliminary -- 5 Algorithm -- 5.1 Correctness of lil'HDoC -- 5.2 First Arms Sampling Complexity -- 5.3 Total Sample Complexity -- 6 Experiment -- 6.1 Dataset -- 6.2 Baseline -- 6.3 Results -- 7 Conclusion -- References -- Recommender Systems -- ScaleViz: Scaling Visualization Recommendation Models on Large Data -- 1 Introduction -- 2 Related Works -- 3 Problem Formulation -- 4 Proposed Solution -- 4.1 Cost Profiling -- 4.2 RL Agent.
5 Evaluations -- 5.1 Experimental Setup -- 5.2 Speed-Up in Visualization Generation -- 5.3 Budget vs. Error Trade-Off -- 5.4 Need for Dataset-Specific Feature Selection -- 5.5 Scalability with Increasing Data Size -- 6 Conclusion -- References -- Collaborative Filtering in Latent Space: A Bayesian Approach for Cold-Start Music Recommendation -- 1 Introduction -- 2 Related Work and Problem Formulation -- 2.1 Problem Formulation -- 3 Methodology -- 3.1 Overview -- 3.2 Statistical Model in CFLS -- 3.3 Optimization -- 3.4 Prediction -- 4 Experiments -- 4.1 Dataset -- 4.2 Experimental Settings -- 4.3 Performance Comparisons -- 4.4 Influence of Different Cold-Start Levels -- 4.5 Diversity, Interpretability and User Controllability -- 5 Conclusions -- References -- On Diverse and Precise Recommendations for Small and Medium-Sized Enterprises -- 1 Introduction -- 2 Related Work -- 3 Definitions and Problem Statement -- 4 Variants of a Session-Based Recommender System -- 4.1 Quality Metrics -- 5 Experiments and Evaluation -- 5.1 Selection of Real-World Datasets -- 5.2 Task Definition and Parameter Configuration -- 5.3 Evaluation of Experimental Results -- 6 Conclusion and Future Work -- References -- HMAR: Hierarchical Masked Attention for Multi-behaviour Recommendation -- 1 Introduction -- 2 Methodology -- 2.1 Problem Formulation -- 2.2 HMAR -- 2.3 Multi-task Learning -- 3 Experiments -- 3.1 Experimental Settings -- 3.2 Evaluation Protocol -- 3.3 Model Performance (RQ1) -- 3.4 Effect of Auxiliary Behaviors and Individual Model Components (RQ2 & -- RQ3) -- 4 Related Work -- 5 Conclusion -- References -- Residual Spatio-Temporal Collaborative Networks for Next POI Recommendation -- 1 Introduction -- 2 Related Works -- 3 Method -- 3.1 Problem Formulation -- 3.2 Long-Term Dependence Module -- 3.3 Short-Term Dependence Module -- 3.4 Sample Balancer.
4 Experiments -- 4.1 Experimental Settings -- 4.2 Recommendation Performance -- 4.3 Ablation Study -- 5 Conclusions -- References -- Conditional Denoising Diffusion for Sequential Recommendation -- 1 Introduction -- 2 Related Work -- 3 Methodology -- 3.1 Stepwise Diffuser -- 3.2 Sequence Encoder -- 3.3 Cross-Attentive Conditional Denoising Decoder -- 3.4 Optimization -- 4 Experiments -- 4.1 Plateau of Ranking Prediction -- 4.2 Overall Experiments -- 4.3 Ablation Study -- 4.4 Hyperparameter Sensitivity -- 4.5 Case Study for Stepwise Generation -- 5 Conclusion -- References -- UIPC-MF: User-Item Prototype Connection Matrix Factorization for Explainable Collaborative Filtering -- 1 Introduction -- 2 Related Work -- 2.1 Collaborative Filtering -- 2.2 Explainable and Transparent Recommender Models -- 2.3 The Prototype-Based Collaborative Filtering -- 3 Methodology -- 3.1 User-Item Prototypes Connections Matrix Factorization (UIPC-MF) -- 3.2 Loss Function -- 4 Experiments and Discussion -- 4.1 Evaluation Metrics -- 4.2 Baseline Models -- 4.3 Training Details -- 4.4 Evaluation Results -- 4.5 Explaining UIPC-MF Recommendations -- 4.6 The Impact of L1-Norm in Reduction of Learning Bias -- 5 Conclusion -- References -- Towards Multi-subsession Conversational Recommendation -- 1 Introduction -- 2 Related Works -- 3 MSMCR Scenario -- 3.1 Definition -- 3.2 General Framework -- 4 Methodology -- 4.1 Context-Aware Recommendation -- 4.2 Policy Learning -- 4.3 Model Training -- 5 Experiments -- 5.1 Experimental Setup -- 5.2 Overall Performance -- 5.3 Further Experiments -- 6 Conclusion -- References -- False Negative Sample Aware Negative Sampling for Recommendation -- 1 Introduction -- 2 Related Work -- 3 Preliminary -- 4 Methodology -- 4.1 False Negatives Identification -- 4.2 False Negatives Elimination -- 5 Experiment -- 5.1 Experiment Settings.
5.2 Performance Comparison -- 5.3 Study of EDNS -- 6 Conclusion -- References -- Multi-sourced Integrated Ranking with Exposure Fairness -- 1 Introduction -- 2 Problem Formulation -- 3 Proposed Model -- 3.1 Input Layer -- 3.2 Dual RNN Module -- 3.3 Multi-task Module -- 3.4 Model Training -- 4 Experiments -- 4.1 Experimental Settings -- 4.2 Baselines -- 4.3 Model Selection -- 4.4 Performance Comparison -- 4.5 Ablation Study -- 4.6 Online A/B Testing -- 5 Conclusion -- References -- Soft Contrastive Learning for Implicit Feedback Recommendations -- 1 Introduction -- 2 Related Work -- 3 Methodology -- 3.1 Notations -- 3.2 The SCLRec Framework -- 4 Experiments -- 4.1 Experimental Settings -- 4.2 Overall Performance (RQ1) -- 4.3 Ablation Study (RQ2) -- 4.4 Robustness to Interaction Noises (RQ3) -- 5 Conclusion -- References -- Dual-Graph Convolutional Network and Dual-View Fusion for Group Recommendation -- 1 Introduction -- 2 Problem Formulation -- 3 Approach -- 3.1 Dual-Graph Construction -- 3.2 Dual-Graph Network for Member Preference -- 3.3 Dual-View Fusion for Group Preference -- 3.4 Group Recommendation and Model Training -- 4 Experiments -- 4.1 Experimental Dataset and Setup -- 4.2 Experimental Results and Analysis -- 4.3 Parameter Sensitivity -- 5 Related Works -- 6 Conclusion and Future Work -- References -- TripleS: A Subsidy-Supported Storage for Electricity with Self-financing Management System -- 1 Introduction -- 2 Literature Review -- 2.1 Electricity Subsidy and Operating Reserve -- 2.2 Electricity Management System -- 2.3 Electricity Storage -- 3 Problem Definition and Simulation Environment -- 4 Proposed TripleS -- 5 Experimental Results -- 5.1 Performance Evaluation -- 5.2 Performance Evaluation Under MS Attack -- 5.3 Influence of Self-discharge -- 6 Conclusion -- References -- Spatio-temporal Data.
Mask Adaptive Spatial-Temporal Recurrent Neural Network for Traffic Forecasting.
Record Nr. UNINA-9910851987103321
Yang De-Nian  
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advances in Knowledge Discovery and Data Mining : 28th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2024, Taipei, Taiwan, May 7–10, 2024, Proceedings, Part III / / edited by De-Nian Yang, Xing Xie, Vincent S. Tseng, Jian Pei, Jen-Wei Huang, Jerry Chun-Wei Lin
Advances in Knowledge Discovery and Data Mining : 28th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2024, Taipei, Taiwan, May 7–10, 2024, Proceedings, Part III / / edited by De-Nian Yang, Xing Xie, Vincent S. Tseng, Jian Pei, Jen-Wei Huang, Jerry Chun-Wei Lin
Autore Yang De-Nian
Edizione [1st ed. 2024.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024
Descrizione fisica 1 online resource (448 pages)
Disciplina 006.3
Altri autori (Persone) XieXing
TsengVincent S
PeiJian
HuangJen-Wei
LinJerry Chun-Wei
Collana Lecture Notes in Artificial Intelligence
Soggetto topico Artificial intelligence
Algorithms
Education - Data processing
Computer science - Mathematics
Signal processing
Computer networks
Artificial Intelligence
Design and Analysis of Algorithms
Computers and Education
Mathematics of Computing
Signal, Speech and Image Processing
Computer Communication Networks
ISBN 9789819722594
9819722594
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- General Chairs' Preface -- PC Chairs' Preface -- Organization -- Contents - Part III -- Interpretability and Explainability -- Neural Additive and Basis Models with Feature Selection and Interactions -- 1 Introduction -- 2 Generalized Additive Models (GAMs) -- 2.1 Neural Additive Model (NAM) -- 2.2 Neural Basis Model (NBM) -- 3 NAM and NBM with Feature Selection -- 3.1 Motivation -- 3.2 Model Architecture -- 3.3 Implementation Remark -- 4 Discussion of Model Complexities -- 5 Experiments -- 5.1 Experimental Settings -- 5.2 Baselines -- 5.3 Results -- 6 Conclusion -- References -- Random Mask Perturbation Based Explainable Method of Graph Neural Networks -- 1 Introduction -- 2 Related Work -- 3 Problem Statement -- 4 Explainable Method -- 4.1 Node Importance Based on Fidelity -- 4.2 Explanation Sparsity -- 5 Experiments -- 5.1 Experimental Setup -- 5.2 Quantitative Experiments -- 5.3 Ablation Study -- 5.4 Use Case -- 6 Conclusion -- References -- RouteExplainer: An Explanation Framework for Vehicle Routing Problem -- 1 Introduction -- 2 Related Work -- 3 Proposed Framework: RouteExplainer -- 3.1 Many-to-Many Edge Classifier -- 3.2 Counterfactual Explanation for VRP -- 4 Experiments -- 4.1 Quantitative Evaluation of the Edge Classifier -- 4.2 Qualitative Evaluation of Generated Explanations -- 5 Conclusion and Future Work -- References -- On the Efficient Explanation of Outlier Detection Ensembles Through Shapley Values -- 1 Introduction -- 2 Related Work -- 3 Outlier Detection Ensembles -- 4 The bagged Shapley Values -- 5 Theoretical Guarantees for the Approximation -- 6 Experiments -- 6.1 Quality of the Approximation -- 6.2 Effectiveness -- 6.3 Scalability -- 7 Conclusions -- References -- Interpreting Pretrained Language Models via Concept Bottlenecks -- 1 Introduction -- 2 Related Work -- 2.1 Interpreting Pretrained Language Models.
2.2 Learning from Noisy Labels -- 3 Enable Concept Bottlenecks for PLMs -- 3.1 Problem Setup -- 4 C3M: A General Framework for Learning CBE-PLMs -- 4.1 ChatGPT-Guided Concept Augmentation -- 4.2 Learning from Noisy Concept Labels -- 5 Experiments -- 6 Conclusion -- A Definitions of Training Strategies -- B Details of the Manual Concept Annotation for the IMDB Dataset -- C Implementation Detail -- D Parameters and Notations -- E Statistics of Data Splits -- F Statistics of Concepts in Transformed Datasets -- G More Results on Explainable Predictions -- H A Case Study on Test-Time Intervention -- I Examples of Querying ChatGPT -- References -- Unmasking Dementia Detection by Masking Input Gradients: A JSM Approach to Model Interpretability and Precision -- 1 Introduction -- 2 Related Work -- 3 Methods -- 3.1 Jacobian Saliency Map (JSM) -- 3.2 Jacobian-Augmented Loss Function (JAL) -- 4 Experiments -- 4.1 Dataset -- 4.2 Preprocessing -- 4.3 Multimodal Classification -- 4.4 Performance Evaluation -- 5 Conclusion -- References -- Towards Nonparametric Topological Layers in Neural Networks -- 1 Introduction -- 1.1 Background -- 1.2 Motivation and Challenges -- 1.3 Contributions -- 2 Preliminaries and Related Work -- 2.1 Basics of Topology -- 2.2 Topological Neural Network -- 2.3 Functional Spaces for Machine Learning -- 3 Methodology -- 4 Evaluation -- 4.1 Experimental Setup -- 4.2 Implementation -- 4.3 Overall Performance -- 4.4 Learning Rate -- 4.5 Temporal-Spatial Correlation -- 5 Conclusion -- References -- Online, Streaming, Distributed Algorithms -- Streaming Fair k-Center Clustering over Massive Dataset with Performance Guarantee -- 1 Introduction -- 1.1 Problem Statement -- 1.2 Related Work -- 1.3 Our Contribution -- 2 A Two-Pass Algorithm with Approximation Ratio 3 -- 2.1 The -Independent Center Set -- 2.2 The Two-Pass Streaming Algorithm.
3 The Streaming Algorithm with an Approximation Ratio 7 -- 3.1 The Streaming Algorithm for Constructing 1 and 2 -- 3.2 Post-streaming Construction of Center Set C from 12 -- 4 Experimental Results -- 4.1 Experimental Setting -- 4.2 Experimental Analysis -- 5 Conclusion -- References -- Projection-Free Bandit Convex Optimization over Strongly Convex Sets -- 1 Introduction -- 2 Related Work -- 2.1 Projection-Free OCO Algorithms -- 2.2 Bandit Convex Optimization -- 3 Main Results -- 3.1 Preliminaries -- 3.2 Our Proposed Algorithm -- 3.3 Theoretical Guarantees -- 4 Experiments -- 4.1 Problem Settings -- 4.2 Experimental Results -- 5 Conclusion -- References -- Adaptive Prediction Interval for Data Stream Regression -- 1 Introduction -- 2 Related Work -- 3 Background -- 4 Adaptive Prediction Interval(AdaPI) -- 5 Experiments and Results -- 5.1 Comparison to Interval Forecast -- 5.2 Comparison Between MVE and AdaPI -- 6 Conclusions -- References -- Probabilistic Guarantees of Stochastic Recursive Gradient in Non-convex Finite Sum Problems -- 1 Introduction -- 1.1 Related Works -- 1.2 Our Contributions -- 1.3 Notation -- 2 Prob-SARAH Algorithm -- 3 Theoretical Results -- 3.1 Technical Assumptions -- 3.2 Main Results on Complexity -- 3.3 Proof Sketch -- 4 Numerical Experiments -- 4.1 Logistic Regression with Non-convex Regularization -- 4.2 Two-Layer Neural Network -- 5 Conclusion -- References -- Rethinking Personalized Federated Learning with Clustering-Based Dynamic Graph Propagation -- 1 Introduction -- 2 Related Work -- 3 Methodology -- 3.1 Model Overview -- 3.2 Client Model Clustering -- 3.3 Dynamic Weighted Graph Construction -- 3.4 Knowledge Propagation and Aggregation -- 3.5 Precise Personalized Model Distribution -- 4 Experiment -- 4.1 Experiment Setup -- 4.2 Performance Evaluation -- 4.3 Ablation Study -- 4.4 Case Study -- 4.5 Hyperparameter Study.
5 Conclusion -- References -- Unveiling Backdoor Risks Brought by Foundation Models in Heterogeneous Federated Learning -- 1 Introduction -- 2 Related Work -- 3 Methodology -- 3.1 Threat Model -- 3.2 FMs Empowered Backdoor Attacks to HFL -- 4 Experiment -- 4.1 Experiment Setup -- 4.2 Experimental Results -- 4.3 Homogeneous Setting Evaluation -- 4.4 Case Study: Attack Effectiveness v.s. Public Data Utilization Ratio -- 4.5 Hyper-Parameter Study: ASR v.s. Poisoning Ratio -- 5 Conclusion -- References -- Combating Quality Distortion in Federated Learning with Collaborative Data Selection -- 1 Introduction -- 2 Related Works -- 3 Proposal -- 3.1 Preliminaries -- 3.2 Design Principle -- 3.3 Collaborative Sample Selection (CSS) -- 4 Evaluation -- 4.1 Datasets and Experimental Settings -- 4.2 Experimental Results -- 5 Conclusion -- References -- Probabilistic Models and Statistical Inference -- Neural Marked Hawkes Process for Limit Order Book Modeling -- 1 Introduction -- 2 Background -- 3 Neural Marked Hawkes Process -- 4 Related Work -- 5 Experiments -- 6 Conclusion -- References -- How Large Corpora Sizes Influence the Distribution of Low Frequency Text n-grams -- 1 Introduction -- 2 Background and Related Work -- 3 The Model -- 4 Results -- 4.1 The Corpora Collection -- 4.2 The Range of k Values for W(k,C -- L,n) Prediction -- 4.3 The Assessment Criteria and Parameter Estimation -- 4.4 Comparison with Other Models -- 4.5 Obtained Results -- 4.6 The Predictions with Growing Corpus Size -- 5 Conclusions -- References -- Meta-Reinforcement Learning Algorithm Based on Reward and Dynamic Inference -- 1 Introduction -- 2 Background -- 2.1 Meta-Reinforcement Learning -- 2.2 Context-Based Meta-Reinforcement Learning -- 2.3 Parametric Task Distributions -- 3 Problem Statement -- 4 Method -- 4.1 Reward and Dynamics Inference.
4.2 Meta-Reinforcement Learning Algorithm Based on Reward and Dynamics Inference Encoders -- 5 Experiment -- 5.1 Common MuJoCo Environments -- 5.2 Cartesian Product Combinations of Tasks with Different Goals and Dynamics -- 6 Discussion -- References -- Security and Privacy -- SecureBoost+: Large Scale and High-Performance Vertical Federated Gradient Boosting Decision Tree -- 1 Introduction -- 2 Preliminaries -- 2.1 Gradient Boosting Decision Tree -- 2.2 Paillier Homomorphic Encryption -- 2.3 SecureBoost -- 2.4 Performance Bottlenecks Analysis for SecureBoost -- 3 Proposed SecureBoost+ Framework -- 3.1 Ciphertext Operation Optimization -- 3.2 Training Mechanism Optimization -- 4 Experiments -- 4.1 Setup -- 4.2 Ciphertext Operation Optimization Evaluation -- 4.3 Training Mechanism Optimization Evaluation -- 5 Conclusion -- References -- Construct a Secure CNN Against Gradient Inversion Attack -- 1 Introduction -- 2 Preliminary -- 2.1 Federated Learning -- 2.2 Gradient Inversion Attack -- 2.3 Recursive Gradient Attack on Privacy (R-GAP) -- 3 Secure Convolutional Neural Networks -- 4 Experiment -- 4.1 Quantitative Results -- 4.2 Quantitative Results -- 5 Related Work -- 6 Limitation and Conclusion -- References -- Backdoor Attack Against One-Class Sequential Anomaly Detection Models -- 1 Introduction -- 2 Related Work -- 3 Preliminaries -- 3.1 Deep One-Class Sequential Anomaly Detection -- 3.2 Mutual Information Maximization -- 4 Methodology -- 4.1 Threat Model -- 4.2 The Proposed Attack -- 4.3 Post-deployment Attack -- 5 Experiments -- 5.1 Experimental Setup -- 5.2 Experimental Results -- 6 Conclusions -- References -- Semi-supervised and Unsupervised Learning -- DALLMi: Domain Adaption for LLM-Based Multi-label Classifier -- 1 Introduction -- 2 Language Model and Domain Adaptation -- 3 DALLMi -- 4 Experiments -- 5 Conclusion -- References.
Contrastive Learning for Unsupervised Sentence Embedding with False Negative Calibration.
Record Nr. UNINA-9910851994303321
Yang De-Nian  
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advances in Knowledge Discovery and Data Mining : 28th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2024, Taipei, Taiwan, May 7–10, 2024, Proceedings, Part II / / edited by De-Nian Yang, Xing Xie, Vincent S. Tseng, Jian Pei, Jen-Wei Huang, Jerry Chun-Wei Lin
Advances in Knowledge Discovery and Data Mining : 28th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2024, Taipei, Taiwan, May 7–10, 2024, Proceedings, Part II / / edited by De-Nian Yang, Xing Xie, Vincent S. Tseng, Jian Pei, Jen-Wei Huang, Jerry Chun-Wei Lin
Edizione [1st ed. 2024.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024
Descrizione fisica 1 online resource (XXXIV, 459 p. 145 illus., 138 illus. in color.)
Disciplina 006.3
Collana Lecture Notes in Artificial Intelligence
Soggetto topico Artificial intelligence
Algorithms
Education - Data processing
Computer science - Mathematics
Signal processing
Computer networks
Artificial Intelligence
Design and Analysis of Algorithms
Computers and Education
Mathematics of Computing
Signal, Speech and Image Processing
Computer Communication Networks
ISBN 981-9722-53-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- General Chairs' Preface -- PC Chairs' Preface -- Organization -- Contents - Part II -- Deep Learning -- AdaPQ: Adaptive Exploration Product Quantization with Adversary-Aware Block Size Selection Toward Compression Efficiency -- 1 Introduction -- 2 Related Works -- 3 Preliminary -- 4 Methodology -- 4.1 Adaptive Exploration Quantization -- 4.2 Adversary-Aware Block Size Selection -- 5 Experiments -- 6 Conclusion -- References -- Ranking Enhanced Supervised Contrastive Learning for Regression -- 1 Introduction -- 2 Related Work -- 3 Preliminaries -- 4 Methodology -- 4.1 Motivation -- 4.2 Ranking Enhanced Supervised Contrastive Learning (RESupCon) -- 5 Experiments -- 5.1 Datasets -- 5.2 Baselines and Settings -- 5.3 Overall Performance -- 5.4 Comparison on Spearman's Rank Correlation Coefficients -- 5.5 Parameter Study and Loss Curve -- 6 Conclusion -- References -- Treatment Effect Estimation Under Unknown Interference -- 1 Introduction -- 2 Related Work -- 3 Preliminaries -- 4 Proposed Method: Treatment Effect Estimation Under Unknown Interference -- 4.1 Covariate Representation Learner -- 4.2 Graph Structure Learner -- 4.3 Aggregation Function -- 4.4 Outcome Predictors and ITE Estimators -- 5 Experiments -- 5.1 Experiment Settings -- 5.2 Results -- 6 Conclusion -- A Identifiability of the Expectation of Potential Outcomes -- B HSIC -- C Implementation Details -- D Ablation Experiments -- References -- A New Loss for Image Retrieval: Class Anchor Margin -- 1 Introduction -- 2 Related Work -- 3 Method -- 4 Experiments -- 4.1 Datasets -- 4.2 Experimental Setup -- 4.3 Results -- 5 Conclusion -- References -- Personalized EDM Subject Generation via Co-factored User-Subject Embedding -- 1 Introduction -- 2 Related Work -- 3 Proposed Model -- 3.1 Retrieve and Re-rank -- 3.2 Variational Encoder and Bi-directional Selective Encoder.
3.3 User-Subject Co-factor System -- 3.4 User-Based Decoder -- 4 Experimental Results -- 4.1 Quantitative Results -- 4.2 Effect of Template -- 5 Conclusions and Future Work -- References -- Spatial-Temporal Bipartite Graph Attention Network for Traffic Forecasting -- 1 Introduction -- 2 Related Work -- 3 Definitions and Problem Statement -- 3.1 Definitions -- 3.2 Problem Statement -- 4 Methodology -- 4.1 Data Inputs and Data Preprocessing -- 4.2 Encoder Decoder Architecture -- 4.3 Bipartite Graph Attention Layer -- 4.4 Heterogeneous Cross Attention Layers -- 5 Experiments -- 5.1 Experiment Setup -- 5.2 Comparison of Performance -- 5.3 Ablation Study -- 6 Conclusion and Future Works -- References -- CMed-GPT: Prompt Tuning for Entity-Aware Chinese Medical Dialogue Generation -- 1 Introduction -- 2 Related Work -- 3 Datasets -- 4 Method -- 4.1 Pre-training Model -- 4.2 Medical Dialogue Generation Model -- 5 Experiments -- 5.1 Experimental Setting -- 5.2 Experimental Results -- 6 Conclusion -- References -- MvRNA: A New Multi-view Deep Neural Network for Predicting Parkinson's Disease -- 1 Introduction -- 2 Related Work -- 3 Methods -- 3.1 Data Representation Based on Multiple Views -- 3.2 ResNet18 with BWH -- 3.3 Channel Attention Implemented Using SENet -- 4 Experiments and Results -- 4.1 Dataset -- 4.2 Experimental Settings -- 4.3 Experimental Results and Analysis -- 4.4 Ablation Experiment -- 5 Conclusion -- References -- Path-Aware Cross-Attention Network for Question Answering -- 1 Introduction -- 2 Related Work -- 3 Task Definition -- 4 Method -- 4.1 Text Encoder and Path Encoder -- 4.2 Path-Aware Cross-Attention -- 4.3 Self-learning Based Path Scoring Method -- 4.4 Learning and Inference -- 5 Experiment -- 5.1 Dataset -- 5.2 Baseline Models -- 5.3 Main Result -- 6 Analysis -- 6.1 Ablation Studies -- 6.2 Model Interpretability.
6.3 Quantitative Analisis -- 7 Conclusion -- References -- StyleAutoEncoder for Manipulating Image Attributes Using Pre-trained StyleGAN -- 1 Introduction -- 2 Related Work -- 3 Methodology -- 3.1 Preliminaries -- 3.2 StyleAutoEncoder -- 3.3 Discussion -- 4 Experiments -- 4.1 Evaluation Metrics -- 4.2 Models Implementation -- 4.3 Manipulation of Facial Features -- 4.4 Evaluation on Animal Faces -- 5 Conclusion -- References -- SEE: Spherical Embedding Expansion for Improving Deep Metric Learning -- 1 Introduction -- 2 Related Works -- 3 Method -- 3.1 Preliminary -- 3.2 Spherical Embedding Expansion -- 4 Experiments -- 4.1 Experiment Setting -- 4.2 Quantitative Results -- 4.3 Ablation Studies -- 5 Conclusion -- References -- Multi-modal Recurrent Graph Neural Networks for Spatiotemporal Forecasting -- 1 Introduction -- 2 Related Work -- 3 Methods -- 3.1 Problem Formulation -- 3.2 Model Design -- 4 Experiments -- 4.1 Model Baselines -- 4.2 Primary Results -- 4.3 Ablation Study -- 5 Conclusions -- 7 Appendix -- References -- Layer-Wise Sparse Training of Transformer via Convolutional Flood Filling -- 1 Introduction -- 2 Background and Related Work -- 2.1 Transformer -- 2.2 Related Work on Sparse Attention -- 3 Motivation: Analysis of Sparse Patterns in MHA -- 4 SPION: Layer-Wise Sparse Attention in Transformer -- 4.1 Overview of SPION -- 4.2 Sparsity Pattern Generation with Convolutional Flood Fill Algorithm -- 5 Experimental Evaluation -- 5.1 Performance Evaluation -- 5.2 Computational Complexity Analysis -- 6 Conclusion -- References -- Towards Cost-Efficient Federated Multi-agent RL with Learnable Aggregation -- 1 Introduction -- 2 Preliminary -- 3 Federated MARL with Learnable Aggregation -- 4 Convergence Analysis -- 5 Experiments -- 6 Related Work -- 7 Conclusion -- References.
LongStory: Coherent, Complete and Length Controlled Long Story Generation -- 1 Introduction -- 2 Related Works -- 2.1 Neural Story Generation -- 2.2 Recursive Models -- 2.3 Autometic Metrics -- 3 Methodology -- 3.1 Task Description -- 3.2 Long and Short Term Contexts Weight Calibrator(CWC) -- 3.3 Long Story Structural Positions (LSP) -- 3.4 Base Pretrained Model -- 4 Experiments -- 4.1 Experiments Set-Up -- 4.2 Experimental Results -- 4.3 Further Analysis -- 5 Conclusion -- References -- Relation-Aware Label Smoothing for Self-KD -- 1 Introduction -- 2 Related Work -- 3 Our Approach -- 3.1 RAS-KD -- 4 Experimental Results -- 5 Ablation Study -- 6 Conclusion -- References -- Bi-CryptoNets: Leveraging Different-Level Privacy for Encrypted Inference -- 1 Introduction -- 2 Relevant Work -- 3 Our Bi-CryptoNets -- 3.1 The Bi-branch of Neural Network -- 3.2 The Unidirectional Connections -- 3.3 The Feature Integration -- 4 Knowledge Distillation for Bi-CryptoNets -- 5 Experiments -- 6 Conclusion -- References -- Enhancing YOLOv7 for Plant Organs Detection Using Attention-Gate Mechanism -- 1 Introduction -- 2 Related Work -- 2.1 Attention-Gate Mechanism -- 3 YOLOv7 with Attention-Gate Mechanism -- 4 Experiments -- 4.1 Experiment Materials -- 4.2 Evaluation Metrics -- 4.3 Experimental Results -- 5 Conclusion -- References -- On Dark Knowledge for Distilling Generators -- 1 Introduction -- 2 Preliminary -- 3 Theoretical Analysis of Dark Knowledge in Distilling the Generator -- 3.1 Dark Knowledge of Generators -- 3.2 Distillation Empirical Risk -- 3.3 Generalization of the Student Generator -- 3.4 Impact of Probability Approximation -- 4 DKtill: Extracting Dark Knowledge for Training Student Generator -- 4.1 Extracting from Probabilistic Generators -- 4.2 Extracting from Non-probabilistic Generators -- 5 Empirical Illustration -- 5.1 Setting.
5.2 Distilling Probabilistic Generators -- 5.3 Distilling Non-probabilistic Generators -- 5.4 Small Generators Through DKtill -- 6 Related Work -- 7 Conclusion -- References -- RPH-PGD: Randomly Projected Hessian for Perturbed Gradient Descent -- 1 Introduction -- 2 Preliminary -- 2.1 Notation -- 2.2 Methods to Escape from Saddle Points -- 2.3 Perturbed Gradient Descent -- 3 Algorithms -- 3.1 Randomly Projected Hessian -- 3.2 Shifted Randomly Projected Hessian -- 3.3 RPH-PGD -- 4 Experiments -- 5 Conclusion and Future Work -- References -- Transformer based Multitask Learning for Image Captioning and Object Detection -- 1 Introduction -- 2 Related Work -- 3 Proposed Method -- 3.1 Objective Function -- 4 Experimental Setup -- 5 Results -- 5.1 Comparison and Analysis -- 5.2 Ablation Studies -- 6 Conclusion -- References -- Communicative and Cooperative Learning for Multi-agent Indoor Navigation -- 1 Introduction -- 2 Related Work -- 3 Cooperative Indoor Navigation Task -- 3.1 Task Definition -- 3.2 Multi-agent Indoor Navigation Environment -- 3.3 Data Collection -- 4 Cooperative Indoor Navigation Models -- 4.1 Preliminaries -- 4.2 Framework -- 5 Experiment -- 5.1 Benchmarking CIN with MARL Models -- 5.2 Implementation Details -- 5.3 Evaluation Metrics -- 5.4 Quantitative and Qualitative Results -- 6 Conclusion -- References -- Enhancing Continuous Domain Adaptation with Multi-path Transfer Curriculum -- 1 Introduction -- 2 Methodology -- 2.1 Preliminary -- 2.2 Method Framework -- 2.3 Wasserstein-Based Transfer Curriculum -- 2.4 Multi-path Optimal Transport -- 3 Experimental Results -- 3.1 Datasets and Experimental Configurations -- 3.2 Analysis of Wasserstein-Based Transfer Curriculum -- 3.3 Adaptation Comparison Results -- 3.4 Ablation Study -- 4 Conclusion -- References -- Graphs and Networks.
Enhancing Network Role Modeling: Introducing Attributed Multiplex Structural Role Embedding for Complex Networks.
Record Nr. UNINA-9910851992303321
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui