top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Controlling steady-state and dynamical properties of atomic optical bistability [[electronic resource] /] / Amitabh Joshi, Min Xiao
Controlling steady-state and dynamical properties of atomic optical bistability [[electronic resource] /] / Amitabh Joshi, Min Xiao
Autore Joshi Amitabh <1965->
Pubbl/distr/stampa Hackensack, NJ ; ; Singapore, : World Scientific, c2012
Descrizione fisica 1 online resource (246 p.)
Disciplina 535.2
Altri autori (Persone) XiaoMin
Soggetto topico Optical bistability
Quantum optics
Soggetto genere / forma Electronic books.
ISBN 1-283-59362-9
9786613906076
981-4307-56-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface; Contents; 1. Introduction; 1.1 Background; 1.2 Nonlinearity in a Two-level Atomic System; 1.2.1 Two-level atoms interacting with a monochromatic field: the density-matrix approach; 1.2.2 Absorption and dispersion spectra in steady-state; 1.2.3 First- and third-order susceptibilities and the saturation phenomenon; 1.3 Doppler Effect in Inhomogeneously-broadened Atomic Systems; 1.3.1 Doppler effect in a two-level atomic system; 1.3.2 Doppler effect in three-level atomic systems; 1.4 Optical Cavity
1.4.1 Optical Fabry-Perot cavity: transmission and reflection functions, finesse and quality factor1.4.2 Optical ring cavity; 1.4.3 Optical ring cavity with an intracavity medium: modification of transmission function; 1.5 Controllable Linear and Nonlinear Susceptibilities in Three-level Atomic Systems; 1.5.1 Early works on coherent population trapping; 1.5.2 Coherent population trapping vs electromagnetically induced transparency; 1.5.3 Controlling linear absorption and dispersion properties in three-level electromagnetically induced transparency systems
A. Three-level system in ladder configurationB. Three-level system in -type configuration; 1.5.4 Enhancement and control of Kerr nonlinearity in three-level electromagnetically induced transparency systems; 2. Atomic Optical Bistability in a Two-level System; 2.1 Two-level Atoms inside an Optical Cavity; 2.1.1 Split in transmission spectrum of the optical cavity; 2.2 Atomic Optical Bistability; 2.2.1 Atomic optical bistability: the mean field theory; 2.3 Absorptive Atomic Optical Bistability; 2.3.1 Simple model of absorptive atomic optical bistability
2.3.2 Mean field theory of absorptive atomic optical bistability2.4 Dispersive/refractive Atomic Optical Bistability; 2.4.1 Simple model of dispersive/refractive atomic optical bistability; 2.4.2 Mean field theory of dispersive/refractive atomic optical bistability; 2.5 Mixed Absorptive-dispersive Atomic Optical Bistability; 2.6 Experimental Demonstrations of Two-level Atomic Optical Bistability; 2.7 Potential Applications of Atomic Optical Bistability; 3. Three-level Atoms as the Intracavity Medium and Atomic Optical Bistability; 3.1 Three-level Atoms as the Intracavity Medium
3.1.1 Cavity linewidth narrowing effect due to three-level medium inside an optical cavity3.1.1.1 Theoretical calculations; 3.1.1.2 Experimental Investigations; 3.1.2 Enhanced cavity ring-down spectroscopy with a three-level electromagnetically induced transparency system; 3.2 Atomic Optical Bistability with Three-level Atomic System; 3.2.1 Equations for three-level atomic dynamics and field propagation; 3.2.2 Experiments on controlling the steady-state shape and thresholds of the atomic optical bistability
3.2.3 Experimental control of the rotating direction of the hysteresis cycle of atomic optical bistability
Record Nr. UNINA-9910465492303321
Joshi Amitabh <1965->  
Hackensack, NJ ; ; Singapore, : World Scientific, c2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Controlling steady-state and dynamical properties of atomic optical bistability [[electronic resource] /] / Amitabh Joshi, Min Xiao
Controlling steady-state and dynamical properties of atomic optical bistability [[electronic resource] /] / Amitabh Joshi, Min Xiao
Autore Joshi Amitabh <1965->
Pubbl/distr/stampa Hackensack, NJ ; ; Singapore, : World Scientific, c2012
Descrizione fisica 1 online resource (246 p.)
Disciplina 535.2
Altri autori (Persone) XiaoMin
Soggetto topico Optical bistability
Quantum optics
ISBN 1-283-59362-9
9786613906076
981-4307-56-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface; Contents; 1. Introduction; 1.1 Background; 1.2 Nonlinearity in a Two-level Atomic System; 1.2.1 Two-level atoms interacting with a monochromatic field: the density-matrix approach; 1.2.2 Absorption and dispersion spectra in steady-state; 1.2.3 First- and third-order susceptibilities and the saturation phenomenon; 1.3 Doppler Effect in Inhomogeneously-broadened Atomic Systems; 1.3.1 Doppler effect in a two-level atomic system; 1.3.2 Doppler effect in three-level atomic systems; 1.4 Optical Cavity
1.4.1 Optical Fabry-Perot cavity: transmission and reflection functions, finesse and quality factor1.4.2 Optical ring cavity; 1.4.3 Optical ring cavity with an intracavity medium: modification of transmission function; 1.5 Controllable Linear and Nonlinear Susceptibilities in Three-level Atomic Systems; 1.5.1 Early works on coherent population trapping; 1.5.2 Coherent population trapping vs electromagnetically induced transparency; 1.5.3 Controlling linear absorption and dispersion properties in three-level electromagnetically induced transparency systems
A. Three-level system in ladder configurationB. Three-level system in -type configuration; 1.5.4 Enhancement and control of Kerr nonlinearity in three-level electromagnetically induced transparency systems; 2. Atomic Optical Bistability in a Two-level System; 2.1 Two-level Atoms inside an Optical Cavity; 2.1.1 Split in transmission spectrum of the optical cavity; 2.2 Atomic Optical Bistability; 2.2.1 Atomic optical bistability: the mean field theory; 2.3 Absorptive Atomic Optical Bistability; 2.3.1 Simple model of absorptive atomic optical bistability
2.3.2 Mean field theory of absorptive atomic optical bistability2.4 Dispersive/refractive Atomic Optical Bistability; 2.4.1 Simple model of dispersive/refractive atomic optical bistability; 2.4.2 Mean field theory of dispersive/refractive atomic optical bistability; 2.5 Mixed Absorptive-dispersive Atomic Optical Bistability; 2.6 Experimental Demonstrations of Two-level Atomic Optical Bistability; 2.7 Potential Applications of Atomic Optical Bistability; 3. Three-level Atoms as the Intracavity Medium and Atomic Optical Bistability; 3.1 Three-level Atoms as the Intracavity Medium
3.1.1 Cavity linewidth narrowing effect due to three-level medium inside an optical cavity3.1.1.1 Theoretical calculations; 3.1.1.2 Experimental Investigations; 3.1.2 Enhanced cavity ring-down spectroscopy with a three-level electromagnetically induced transparency system; 3.2 Atomic Optical Bistability with Three-level Atomic System; 3.2.1 Equations for three-level atomic dynamics and field propagation; 3.2.2 Experiments on controlling the steady-state shape and thresholds of the atomic optical bistability
3.2.3 Experimental control of the rotating direction of the hysteresis cycle of atomic optical bistability
Record Nr. UNINA-9910792081403321
Joshi Amitabh <1965->  
Hackensack, NJ ; ; Singapore, : World Scientific, c2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Controlling steady-state and dynamical properties of atomic optical bistability [[electronic resource] /] / Amitabh Joshi, Min Xiao
Controlling steady-state and dynamical properties of atomic optical bistability [[electronic resource] /] / Amitabh Joshi, Min Xiao
Autore Joshi Amitabh <1965->
Pubbl/distr/stampa Hackensack, NJ ; ; Singapore, : World Scientific, c2012
Descrizione fisica 1 online resource (246 p.)
Disciplina 535.2
Altri autori (Persone) XiaoMin
Soggetto topico Optical bistability
Quantum optics
ISBN 1-283-59362-9
9786613906076
981-4307-56-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface; Contents; 1. Introduction; 1.1 Background; 1.2 Nonlinearity in a Two-level Atomic System; 1.2.1 Two-level atoms interacting with a monochromatic field: the density-matrix approach; 1.2.2 Absorption and dispersion spectra in steady-state; 1.2.3 First- and third-order susceptibilities and the saturation phenomenon; 1.3 Doppler Effect in Inhomogeneously-broadened Atomic Systems; 1.3.1 Doppler effect in a two-level atomic system; 1.3.2 Doppler effect in three-level atomic systems; 1.4 Optical Cavity
1.4.1 Optical Fabry-Perot cavity: transmission and reflection functions, finesse and quality factor1.4.2 Optical ring cavity; 1.4.3 Optical ring cavity with an intracavity medium: modification of transmission function; 1.5 Controllable Linear and Nonlinear Susceptibilities in Three-level Atomic Systems; 1.5.1 Early works on coherent population trapping; 1.5.2 Coherent population trapping vs electromagnetically induced transparency; 1.5.3 Controlling linear absorption and dispersion properties in three-level electromagnetically induced transparency systems
A. Three-level system in ladder configurationB. Three-level system in -type configuration; 1.5.4 Enhancement and control of Kerr nonlinearity in three-level electromagnetically induced transparency systems; 2. Atomic Optical Bistability in a Two-level System; 2.1 Two-level Atoms inside an Optical Cavity; 2.1.1 Split in transmission spectrum of the optical cavity; 2.2 Atomic Optical Bistability; 2.2.1 Atomic optical bistability: the mean field theory; 2.3 Absorptive Atomic Optical Bistability; 2.3.1 Simple model of absorptive atomic optical bistability
2.3.2 Mean field theory of absorptive atomic optical bistability2.4 Dispersive/refractive Atomic Optical Bistability; 2.4.1 Simple model of dispersive/refractive atomic optical bistability; 2.4.2 Mean field theory of dispersive/refractive atomic optical bistability; 2.5 Mixed Absorptive-dispersive Atomic Optical Bistability; 2.6 Experimental Demonstrations of Two-level Atomic Optical Bistability; 2.7 Potential Applications of Atomic Optical Bistability; 3. Three-level Atoms as the Intracavity Medium and Atomic Optical Bistability; 3.1 Three-level Atoms as the Intracavity Medium
3.1.1 Cavity linewidth narrowing effect due to three-level medium inside an optical cavity3.1.1.1 Theoretical calculations; 3.1.1.2 Experimental Investigations; 3.1.2 Enhanced cavity ring-down spectroscopy with a three-level electromagnetically induced transparency system; 3.2 Atomic Optical Bistability with Three-level Atomic System; 3.2.1 Equations for three-level atomic dynamics and field propagation; 3.2.2 Experiments on controlling the steady-state shape and thresholds of the atomic optical bistability
3.2.3 Experimental control of the rotating direction of the hysteresis cycle of atomic optical bistability
Record Nr. UNINA-9910820569203321
Joshi Amitabh <1965->  
Hackensack, NJ ; ; Singapore, : World Scientific, c2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Quantum control of multi-wave mixing [[electronic resource] /] / Yanpeng Zhang, Feng Wen, and Min Xiao
Quantum control of multi-wave mixing [[electronic resource] /] / Yanpeng Zhang, Feng Wen, and Min Xiao
Autore Zhang Yanpeng
Pubbl/distr/stampa Weinheim, : Wiley-VCH, : Higher Education Press, c2013
Descrizione fisica 1 online resource (353 p.)
Disciplina 535.2
Altri autori (Persone) WenFeng
XiaoMin
Soggetto topico Nonlinear optics
Quantum theory
ISBN 3-527-67238-9
3-527-67236-2
3-527-67239-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Quantum Control of Multi-Wave Mixing; Contents; Preface; 1 Introduction; 1.1 Suppression and Enhancement Conditions of the FWM Process; 1.1.1 Dressed State Theory; 1.1.2 Dark-State Theory in MWM Processes; 1.1.3 Suppression and Enhancement Conditions; 1.2 Fluorescence in MWM; 1.3 MWM Process in Ring Optical Cavity; 1.3.1 High-Order Cavity Mode Splitting with MWM Process; 1.3.2 Squeezed Noise Power with MWM; 1.3.3 Three-Mode Continuous-Variable Entanglement with MWM; 1.4 Photonic Band Gap; 1.4.1 Periodic Energy Level; 1.4.2 Method of Transfer Matrix; 1.4.3 Nonlinear Talbot Effect
1.4.4 Third- and Fifth-Order Nonlinearity1.5 MWM with Rydberg Blockade; 1.6 Summary; References; 2 MWM Quantum Control via EIT; 2.1 Interference of Three MWM via EIT; 2.1.1 Experiment Setup; 2.1.2 Basic Theory; 2.1.3 Results and Discussions; 2.1.4 Conclusion; 2.2 Observation of EWM via EIT; 2.2.1 Basic Theory; 2.2.2 Experimental Results; 2.2.3 Conclusion; 2.3 Controlled MWM via Interacting Dark States; 2.3.1 Basic Theory; 2.3.2 Multi-Wave Mixing (MWM); 2.3.2.1 Four-Wave Mixing (FWM); 2.3.2.2 Four-Dressing SWM; 2.3.2.3 Four-Dressing EWM; 2.3.2.4 Four-Dressing EIT
2.3.3 Numerical Results and Discussion2.3.3.1 Five-Dressing FWM; 2.3.3.2 Four-Dressing SWM; 2.3.3.3 Four-Dressing EWM; 2.3.3.4 Absorption and Dispersion in the Four-Dressing EIT System; 2.3.4 Discussion and Conclusion; 2.4 Observation of Dressed Odd-Order MWM; 2.4.1 Basic Theory and Experimental Scheme; 2.4.2 Dressed Odd-Order MWM; 2.4.3 Conclusion; References; 3 Controllable Autler-Townes Splitting of MWM Process via Dark State; 3.1 Measurement of ac-Stark Shift via FWM; 3.1.1 Experiment and Basic Theory; 3.1.2 Experiment and Result; 3.1.3 Conclusion; 3.2 Evidence of AT Splitting in FWM
3.2.1 Basic Theory3.2.2 Experimental Results; 3.3 Observation of AT Splitting in SWM; 3.3.1 Theoretical Model and Experimental Scheme; 3.3.2 Experiment and Result; 3.3.3 Conclusion; References; 4 Controllable Enhancement and Suppression of MWM Process via Dark State; 4.1 Enhancing and Suppressing FWM in EIT Window; 4.1.1 Theory and Experimental Results; 4.1.2 Experiment and Result; 4.1.3 Conclusion; 4.2 Cascade Dressing Interaction of FWM Image; 4.2.1 Theoretical Model and Experimental Scheme; 4.2.2 Cascade Dressing Interaction; 4.2.3 Conclusion; 4.3 Multi-Dressing Interaction of FWM
4.3.1 Theoretical Model4.3.2 Experimental Result; 4.3.2.1 Single-Dressed DFWM; 4.3.2.2 Doubly-Dressed DFWM; 4.3.2.3 Triply-Dressed DFWM; 4.3.2.4 Power Switching of Enhancement and Suppression; 4.4 Enhancement and Suppression of Two Coexisting SWM Processes; 4.4.1 Theoretical Model and Experimental Scheme; 4.4.2 Experimental Results; 4.4.3 Conclusion; References; 5 Controllable Polarization of MWM Process via Dark State; 5.1 Enhancement and Suppression of FWM via Polarized Light; 5.1.1 Theoretical Model and Analysis; 5.1.2 Experimental Results; 5.1.3 Conclusion
5.2 Polarization-Controlled Spatial Splitting of FWM
Record Nr. UNINA-9910139031403321
Zhang Yanpeng  
Weinheim, : Wiley-VCH, : Higher Education Press, c2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Quantum control of multi-wave mixing [[electronic resource] /] / Yanpeng Zhang, Feng Wen, and Min Xiao
Quantum control of multi-wave mixing [[electronic resource] /] / Yanpeng Zhang, Feng Wen, and Min Xiao
Autore Zhang Yanpeng
Edizione [1st ed.]
Pubbl/distr/stampa Weinheim, : Wiley-VCH, : Higher Education Press, c2013
Descrizione fisica 1 online resource (353 p.)
Disciplina 535.2
Altri autori (Persone) WenFeng
XiaoMin
Soggetto topico Nonlinear optics
Quantum theory
ISBN 3-527-67238-9
3-527-67236-2
3-527-67239-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Quantum Control of Multi-Wave Mixing; Contents; Preface; 1 Introduction; 1.1 Suppression and Enhancement Conditions of the FWM Process; 1.1.1 Dressed State Theory; 1.1.2 Dark-State Theory in MWM Processes; 1.1.3 Suppression and Enhancement Conditions; 1.2 Fluorescence in MWM; 1.3 MWM Process in Ring Optical Cavity; 1.3.1 High-Order Cavity Mode Splitting with MWM Process; 1.3.2 Squeezed Noise Power with MWM; 1.3.3 Three-Mode Continuous-Variable Entanglement with MWM; 1.4 Photonic Band Gap; 1.4.1 Periodic Energy Level; 1.4.2 Method of Transfer Matrix; 1.4.3 Nonlinear Talbot Effect
1.4.4 Third- and Fifth-Order Nonlinearity1.5 MWM with Rydberg Blockade; 1.6 Summary; References; 2 MWM Quantum Control via EIT; 2.1 Interference of Three MWM via EIT; 2.1.1 Experiment Setup; 2.1.2 Basic Theory; 2.1.3 Results and Discussions; 2.1.4 Conclusion; 2.2 Observation of EWM via EIT; 2.2.1 Basic Theory; 2.2.2 Experimental Results; 2.2.3 Conclusion; 2.3 Controlled MWM via Interacting Dark States; 2.3.1 Basic Theory; 2.3.2 Multi-Wave Mixing (MWM); 2.3.2.1 Four-Wave Mixing (FWM); 2.3.2.2 Four-Dressing SWM; 2.3.2.3 Four-Dressing EWM; 2.3.2.4 Four-Dressing EIT
2.3.3 Numerical Results and Discussion2.3.3.1 Five-Dressing FWM; 2.3.3.2 Four-Dressing SWM; 2.3.3.3 Four-Dressing EWM; 2.3.3.4 Absorption and Dispersion in the Four-Dressing EIT System; 2.3.4 Discussion and Conclusion; 2.4 Observation of Dressed Odd-Order MWM; 2.4.1 Basic Theory and Experimental Scheme; 2.4.2 Dressed Odd-Order MWM; 2.4.3 Conclusion; References; 3 Controllable Autler-Townes Splitting of MWM Process via Dark State; 3.1 Measurement of ac-Stark Shift via FWM; 3.1.1 Experiment and Basic Theory; 3.1.2 Experiment and Result; 3.1.3 Conclusion; 3.2 Evidence of AT Splitting in FWM
3.2.1 Basic Theory3.2.2 Experimental Results; 3.3 Observation of AT Splitting in SWM; 3.3.1 Theoretical Model and Experimental Scheme; 3.3.2 Experiment and Result; 3.3.3 Conclusion; References; 4 Controllable Enhancement and Suppression of MWM Process via Dark State; 4.1 Enhancing and Suppressing FWM in EIT Window; 4.1.1 Theory and Experimental Results; 4.1.2 Experiment and Result; 4.1.3 Conclusion; 4.2 Cascade Dressing Interaction of FWM Image; 4.2.1 Theoretical Model and Experimental Scheme; 4.2.2 Cascade Dressing Interaction; 4.2.3 Conclusion; 4.3 Multi-Dressing Interaction of FWM
4.3.1 Theoretical Model4.3.2 Experimental Result; 4.3.2.1 Single-Dressed DFWM; 4.3.2.2 Doubly-Dressed DFWM; 4.3.2.3 Triply-Dressed DFWM; 4.3.2.4 Power Switching of Enhancement and Suppression; 4.4 Enhancement and Suppression of Two Coexisting SWM Processes; 4.4.1 Theoretical Model and Experimental Scheme; 4.4.2 Experimental Results; 4.4.3 Conclusion; References; 5 Controllable Polarization of MWM Process via Dark State; 5.1 Enhancement and Suppression of FWM via Polarized Light; 5.1.1 Theoretical Model and Analysis; 5.1.2 Experimental Results; 5.1.3 Conclusion
5.2 Polarization-Controlled Spatial Splitting of FWM
Record Nr. UNINA-9910823498003321
Zhang Yanpeng  
Weinheim, : Wiley-VCH, : Higher Education Press, c2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui