Sensorless Control of Permanent Magnet Synchronous Machine Drives
| Sensorless Control of Permanent Magnet Synchronous Machine Drives |
| Autore | Zhu Zi Qiang |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2023 |
| Descrizione fisica | 1 online resource (498 pages) |
| Altri autori (Persone) | WuXi Meng |
| Collana | IEEE Press Series on Control Systems Theory and Applications Series |
| ISBN |
1-394-19438-2
1-394-19437-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Title Page -- Copyright Page -- Contents -- About the Authors -- Preface -- List of Abbreviations -- List of Symbols -- Chapter 1 General Introduction -- 1.1 Introduction -- 1.2 Permanent Magnet Machines -- 1.2.1 Topologies -- 1.2.2 Drives -- 1.3 Basic Principle of PM BLAC (PMSM) Drives -- 1.3.1 Modeling -- 1.3.1.1 ABC Reference Frame -- 1.3.1.2 Stationary Reference Frame -- 1.3.1.3 Synchronous Reference Frame -- 1.3.2 Control Strategies -- 1.3.2.1 Space Vector PWM -- 1.3.2.2 Field-Oriented Control -- 1.3.2.3 Direct Torque Control -- 1.3.2.4 Model Predictive Control -- 1.4 Basic Principle of PM BLDC Drives -- 1.4.1 Modeling -- 1.4.2 Control Strategies -- 1.5 Comparison Between PM BLDC (PMSM) and BLAC Drives -- 1.5.1 Square-Wave Back-EMF Machine -- 1.5.2 Sine-Wave Back-EMF Machine -- 1.6 Sensorless Control Techniques and Applications -- 1.6.1 Classification -- 1.6.2 Applications -- 1.7 Scope of This Book -- References -- Chapter 2 Fundamental Model-Based Sensorless Control -- 2.1 Introduction -- 2.2 Flux-Linkage-Based Method -- 2.2.1 Flux-Linkage Method for Non-salient PMSMs -- 2.2.2 Active Flux-Linkage Method for Salient PMSMs -- 2.3 Back-EMF-Based Method -- 2.3.1 Back-EMF Method for Non-salient PMSMs -- 2.3.2 Extended Back-EMF Method for Salient PMSMs -- 2.3.2.1 In Synchronous Reference Frame -- 2.3.2.2 In Stationary Reference Frame -- 2.3.3 Comparison -- 2.3.3.1 Comparison Between Back-EMF and Flux-Linkage Methods -- 2.3.3.2 Comparison of Active Flux and Extended Back-EMF -- 2.4 Position Observer -- 2.4.1 Arctangent Method -- 2.4.2 Phase-Locked Loop -- 2.4.3 Simplified Extended Kalman Filter -- 2.4.4 Simulation Results -- 2.5 Summary -- References -- Chapter 3 Fundamental Model-Based Sensorless Control-Issues and Solutions -- 3.1 Introduction -- 3.2 Integration and Filter.
3.2.1 Initial Value -- 3.2.2 Drift -- 3.2.3 Delay -- 3.3 Back-EMF and Current Harmonics -- 3.3.1 Influence of Back-EMF Harmonics -- 3.3.2 Influence of Current Harmonics -- 3.4 Cross-Coupling Magnetic Saturation -- 3.4.1 Impact on Position Estimation -- 3.4.2 Sensorless Control Accounting for Cross-Coupling Inductance -- 3.5 Parameter Mismatch -- 3.5.1 Impact on Position Estimation -- 3.5.2 Position Correction Method Under Parameter Mismatches -- 3.5.2.1 q-Axis Injection for q-Axis Inductance Mismatch -- 3.5.2.2 d-Axis Injection for Resistance Mismatch -- 3.5.2.3 Amplitude Calculation Technique -- 3.5.2.4 Position Error Correction with LMS Algorithm -- 3.5.2.5 Experimental Results -- 3.6 Parameter Asymmetry -- 3.6.1 Asymmetric Modeling -- 3.6.1.1 Resistance Asymmetry -- 3.6.1.2 Inductance Asymmetry -- 3.6.1.3 Back-EMF Asymmetry -- 3.6.2 Impacts on Position Estimation -- 3.6.3 Harmonic Suppression -- 3.7 Summary -- References -- Chapter 4 Saliency Tracking-Based Sensorless Control Methods -- 4.1 Introduction -- 4.2 High-Frequency Model of PM Machines -- 4.2.1 Model in Synchronous Reference Frame -- 4.2.2 Model in Estimated Synchronous Reference Frame -- 4.2.3 Model in Stationary Reference Frame -- 4.3 High-Frequency Signal Injection in Estimated Synchronous Reference Frame -- 4.3.1 Pulsating Sinusoidal Signal -- 4.3.2 Pulsating Square-Wave Signal -- 4.4 High-Frequency Signal Injection in Stationary Reference Frame -- 4.4.1 Rotating Sinusoidal Signal -- 4.4.2 Pulsating Sinusoidal Signal -- 4.4.2.1 Mathematical Model -- 4.4.2.2 Ip Pre-detection and Compensation -- 4.4.2.3 Experiment Results -- 4.4.3 Pulsating Square-Wave Signal -- 4.4.3.1 Mathematical Model -- 4.4.3.2 IpSQ Pre-detection and Compensation -- 4.4.3.3 Experiment Results -- 4.5 Position Observer -- 4.5.1 Basic Structure -- 4.5.2 Influence of LPF. 4.5.3 Convergence Analysis -- 4.6 Other Saliency Tracking-Based Methods -- 4.6.1 Transient Voltage Vector-Based Method -- 4.6.2 PWM Excitation-Based Method -- 4.7 Summary -- References -- Chapter 5 Saliency Tracking-Based Sensorless Control Methods-Issues and Solutions -- 5.1 Introduction -- 5.2 Cross-Coupling Magnetic Saturation -- 5.2.1 Impact on Position Estimation -- 5.2.2 Compensation Scheme -- 5.2.2.1 Direct Compensation -- 5.2.2.2 Indirect Compensation -- 5.3 Machine Saliency and Load Effect -- 5.3.1 Machine Saliency Investigation -- 5.3.2 Machine Saliency Circle -- 5.4 Multiple Saliency Effect -- 5.5 Asymmetric Parameters -- 5.5.1 High-Frequency Models with Machine Inductance Asymmetry -- 5.5.2 Suppression of Position Errors Due to Inductance Asymmetry -- 5.5.3 Experimental Results -- 5.5.3.1 Position Estimation Under Inductance Asymmetry -- 5.5.3.2 The Second Harmonic Oscillating Error Suppression -- 5.6 Inverter Nonlinearity Effects -- 5.6.1 Mechanism -- 5.6.1.1 Deadtime -- 5.6.1.2 Parasitic Capacitance Effects -- 5.6.2 HF Voltage Distortion -- 5.6.3 HF Current Distortion -- 5.6.3.1 Rotating Signal Injection-Based Method -- 5.6.3.2 Pulsating Signal Injection-Based Method -- 5.6.3.3 Experiment Results -- 5.6.4 Compensation Scheme -- 5.6.4.1 Pre-compensation -- 5.6.4.2 Post-compensation -- 5.6.4.3 Comparison -- 5.7 Signal Processing Delay -- 5.8 Selection of Amplitude and Frequency for Injection Voltage Signal -- 5.8.1 Quantization Error in AD Conversion -- 5.8.2 Sensorless Safe Operation Area -- 5.8.3 Experimental Results of Determining Amplitude and Frequency -- 5.8.4 Sensorless Operation Performance -- 5.8.5 Pseudo-random Selection of Injection Signal -- 5.9 Transition Between Low Speed and High Speed -- 5.10 Summary -- References. Chapter 6 Saliency Tracking-Based Sensorless Control Method Using Zero Sequence Voltage -- 6.1 Introduction -- 6.2 Rotating Sinusoidal Signal Injection -- 6.2.1 Zero Sequence Voltage Model -- 6.2.2 Signal Demodulation -- 6.3 Conventional Pulsating Sinusoidal Signal Injection -- 6.4 Anti-rotating Pulsating Sinusoidal Signal Injection -- 6.4.1 Anti-rotating Signal Injection -- 6.4.2 Signal Demodulation -- 6.4.3 Cross-Saturation Effect -- 6.4.4 Experimental Results -- 6.4.4.1 Zero Sequence Voltage Model Verification -- 6.4.4.2 Steady- and Dynamic-State Position Estimation Performances -- 6.4.4.3 Robustness and Accuracy Comparison -- 6.5 Conventional Pulsating Square-Wave Signal Injection -- 6.6 Anti-rotating Pulsating Square-Wave Signal Injection -- 6.6.1 Anti-rotating Signal Injection -- 6.6.2 Signal Demodulation -- 6.6.3 Cross-Saturation Effect -- 6.6.4 Experimental Results -- 6.6.4.1 Zero Sequence Voltage Model Verification -- 6.6.4.2 Steady- and Dynamic-State Position Estimation Performance -- 6.6.4.3 Comparison to Square-Wave Injection Method with HF Current Sensing -- 6.7 Summary -- References -- Chapter 7 Sensorless Control of Dual Three-Phase PMSMs and Open-.Winding PMSMs -- 7.1 Introduction -- 7.2 Dual Three-Phase PMSMs -- 7.2.1 Modeling of DTP-PMSM Drive -- 7.2.1.1 Double dq Model -- 7.2.1.2 Vector Space Decomposition -- 7.2.2 HFSI Sensorless Control with Current Response -- 7.2.3 HFSI Sensorless Control with Voltage Response -- 7.2.3.1 Zero Sequence Voltage Measurement -- 7.2.3.2 Modeling of Dual Three-Phase PMSM -- 7.2.3.3 Pulsating Sinusoidal Signal Injection -- 7.2.3.4 Rotating Signal Injection Method -- 7.2.3.5 Experimental Results and Analysis for DTP-PMSM -- 7.2.4 Fundamental Model-Based Sensorless Control -- 7.2.4.1 Extended Back-EMF Model on DTP-PMSM -- 7.2.4.2 Parameter Mismatch Effect. 7.2.4.3 Parameter Mismatch Correction -- 7.2.4.4 Experimental Results -- 7.2.5 Third Harmonic Back-EMF-Based Sensorless Control -- 7.3 Open Winding PMSMs -- 7.3.1 Modeling of OW-PMSM Drive -- 7.3.2 Phase Shift-Based SVPWM for OW-PMSM -- 7.3.3 Zero Sequence Current-Based Sensorless Control -- 7.3.4 Nonparametric Zero Sequence Voltage-Based Sensorless Control -- 7.4 Summary -- References -- Chapter 8 Magnetic Polarity Identification -- 8.1 Introduction -- 8.2 Dual Voltage Pulses Injection-Based Method -- 8.3 d-Axis Current Injection-Based Method -- 8.3.1 HF Current Response -- 8.3.2 HF Zero Sequence Voltage Response -- 8.4 Secondary Harmonic-Based Method -- 8.4.1 Modeling of Secondary Harmonics -- 8.4.2 HF Current Response -- 8.4.3 HF Zero Sequence Voltage Response -- 8.4.4 Experiment Results -- 8.5 Summary -- References -- Chapter 9 Rotor Initial Position Estimation -- 9.1 Introduction -- 9.2 Magnetic Saturation Effect -- 9.3 Basic Pulse Injection Method Using Three Phase Currents -- 9.3.1 Pulse Excitation Configuration -- 9.3.2 Current Response Model -- 9.3.3 Initial Position Estimation -- 9.4 Improved Pulse Injection Method Using Three Phase Currents -- 9.4.1 Utilization of Three Phase Current Responses -- 9.4.2 Pulse Injection Sequence -- 9.4.3 Boundary Detection Strategy -- 9.4.4 Experiment Results -- 9.4.4.1 Estimation Example -- 9.4.4.2 Overall Rotor Initial Position Estimation Performance -- 9.4.4.3 Boundary Detection Performance -- 9.5 Pulse Injection Method Using DC-Link Voltage -- 9.5.1 Utilization of DC-Link Voltage Variation -- 9.5.2 Pulse Injection Process -- 9.5.3 Experiment Results -- 9.5.3.1 Estimation Example -- 9.5.3.2 Overall Estimation Performance -- 9.5.3.3 Comparison with Estimation Using Current Responses -- 9.6 Voltage Pulse Selection -- 9.6.1 Selection of Duration. 9.6.2 Selection of Magnitude. |
| Record Nr. | UNINA-9910830579803321 |
Zhu Zi Qiang
|
||
| Newark : , : John Wiley & Sons, Incorporated, , 2023 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Sensorless Control of Permanent Magnet Synchronous Machine Drives
| Sensorless Control of Permanent Magnet Synchronous Machine Drives |
| Autore | Zhu Ziqiang, Ph. D. |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2023 |
| Descrizione fisica | 1 online resource (498 pages) |
| Disciplina | 621.46 |
| Altri autori (Persone) | WuXi Meng |
| Collana | IEEE Press Series on Control Systems Theory and Applications Series |
| Soggetto topico |
Permanent magnet motors
Electric machinery, Synchronous |
| ISBN |
9781394194384
1394194382 9781394194377 1394194374 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Title Page -- Copyright Page -- Contents -- About the Authors -- Preface -- List of Abbreviations -- List of Symbols -- Chapter 1 General Introduction -- 1.1 Introduction -- 1.2 Permanent Magnet Machines -- 1.2.1 Topologies -- 1.2.2 Drives -- 1.3 Basic Principle of PM BLAC (PMSM) Drives -- 1.3.1 Modeling -- 1.3.1.1 ABC Reference Frame -- 1.3.1.2 Stationary Reference Frame -- 1.3.1.3 Synchronous Reference Frame -- 1.3.2 Control Strategies -- 1.3.2.1 Space Vector PWM -- 1.3.2.2 Field-Oriented Control -- 1.3.2.3 Direct Torque Control -- 1.3.2.4 Model Predictive Control -- 1.4 Basic Principle of PM BLDC Drives -- 1.4.1 Modeling -- 1.4.2 Control Strategies -- 1.5 Comparison Between PM BLDC (PMSM) and BLAC Drives -- 1.5.1 Square-Wave Back-EMF Machine -- 1.5.2 Sine-Wave Back-EMF Machine -- 1.6 Sensorless Control Techniques and Applications -- 1.6.1 Classification -- 1.6.2 Applications -- 1.7 Scope of This Book -- References -- Chapter 2 Fundamental Model-Based Sensorless Control -- 2.1 Introduction -- 2.2 Flux-Linkage-Based Method -- 2.2.1 Flux-Linkage Method for Non-salient PMSMs -- 2.2.2 Active Flux-Linkage Method for Salient PMSMs -- 2.3 Back-EMF-Based Method -- 2.3.1 Back-EMF Method for Non-salient PMSMs -- 2.3.2 Extended Back-EMF Method for Salient PMSMs -- 2.3.2.1 In Synchronous Reference Frame -- 2.3.2.2 In Stationary Reference Frame -- 2.3.3 Comparison -- 2.3.3.1 Comparison Between Back-EMF and Flux-Linkage Methods -- 2.3.3.2 Comparison of Active Flux and Extended Back-EMF -- 2.4 Position Observer -- 2.4.1 Arctangent Method -- 2.4.2 Phase-Locked Loop -- 2.4.3 Simplified Extended Kalman Filter -- 2.4.4 Simulation Results -- 2.5 Summary -- References -- Chapter 3 Fundamental Model-Based Sensorless Control-Issues and Solutions -- 3.1 Introduction -- 3.2 Integration and Filter.
3.2.1 Initial Value -- 3.2.2 Drift -- 3.2.3 Delay -- 3.3 Back-EMF and Current Harmonics -- 3.3.1 Influence of Back-EMF Harmonics -- 3.3.2 Influence of Current Harmonics -- 3.4 Cross-Coupling Magnetic Saturation -- 3.4.1 Impact on Position Estimation -- 3.4.2 Sensorless Control Accounting for Cross-Coupling Inductance -- 3.5 Parameter Mismatch -- 3.5.1 Impact on Position Estimation -- 3.5.2 Position Correction Method Under Parameter Mismatches -- 3.5.2.1 q-Axis Injection for q-Axis Inductance Mismatch -- 3.5.2.2 d-Axis Injection for Resistance Mismatch -- 3.5.2.3 Amplitude Calculation Technique -- 3.5.2.4 Position Error Correction with LMS Algorithm -- 3.5.2.5 Experimental Results -- 3.6 Parameter Asymmetry -- 3.6.1 Asymmetric Modeling -- 3.6.1.1 Resistance Asymmetry -- 3.6.1.2 Inductance Asymmetry -- 3.6.1.3 Back-EMF Asymmetry -- 3.6.2 Impacts on Position Estimation -- 3.6.3 Harmonic Suppression -- 3.7 Summary -- References -- Chapter 4 Saliency Tracking-Based Sensorless Control Methods -- 4.1 Introduction -- 4.2 High-Frequency Model of PM Machines -- 4.2.1 Model in Synchronous Reference Frame -- 4.2.2 Model in Estimated Synchronous Reference Frame -- 4.2.3 Model in Stationary Reference Frame -- 4.3 High-Frequency Signal Injection in Estimated Synchronous Reference Frame -- 4.3.1 Pulsating Sinusoidal Signal -- 4.3.2 Pulsating Square-Wave Signal -- 4.4 High-Frequency Signal Injection in Stationary Reference Frame -- 4.4.1 Rotating Sinusoidal Signal -- 4.4.2 Pulsating Sinusoidal Signal -- 4.4.2.1 Mathematical Model -- 4.4.2.2 Ip Pre-detection and Compensation -- 4.4.2.3 Experiment Results -- 4.4.3 Pulsating Square-Wave Signal -- 4.4.3.1 Mathematical Model -- 4.4.3.2 IpSQ Pre-detection and Compensation -- 4.4.3.3 Experiment Results -- 4.5 Position Observer -- 4.5.1 Basic Structure -- 4.5.2 Influence of LPF. 4.5.3 Convergence Analysis -- 4.6 Other Saliency Tracking-Based Methods -- 4.6.1 Transient Voltage Vector-Based Method -- 4.6.2 PWM Excitation-Based Method -- 4.7 Summary -- References -- Chapter 5 Saliency Tracking-Based Sensorless Control Methods-Issues and Solutions -- 5.1 Introduction -- 5.2 Cross-Coupling Magnetic Saturation -- 5.2.1 Impact on Position Estimation -- 5.2.2 Compensation Scheme -- 5.2.2.1 Direct Compensation -- 5.2.2.2 Indirect Compensation -- 5.3 Machine Saliency and Load Effect -- 5.3.1 Machine Saliency Investigation -- 5.3.2 Machine Saliency Circle -- 5.4 Multiple Saliency Effect -- 5.5 Asymmetric Parameters -- 5.5.1 High-Frequency Models with Machine Inductance Asymmetry -- 5.5.2 Suppression of Position Errors Due to Inductance Asymmetry -- 5.5.3 Experimental Results -- 5.5.3.1 Position Estimation Under Inductance Asymmetry -- 5.5.3.2 The Second Harmonic Oscillating Error Suppression -- 5.6 Inverter Nonlinearity Effects -- 5.6.1 Mechanism -- 5.6.1.1 Deadtime -- 5.6.1.2 Parasitic Capacitance Effects -- 5.6.2 HF Voltage Distortion -- 5.6.3 HF Current Distortion -- 5.6.3.1 Rotating Signal Injection-Based Method -- 5.6.3.2 Pulsating Signal Injection-Based Method -- 5.6.3.3 Experiment Results -- 5.6.4 Compensation Scheme -- 5.6.4.1 Pre-compensation -- 5.6.4.2 Post-compensation -- 5.6.4.3 Comparison -- 5.7 Signal Processing Delay -- 5.8 Selection of Amplitude and Frequency for Injection Voltage Signal -- 5.8.1 Quantization Error in AD Conversion -- 5.8.2 Sensorless Safe Operation Area -- 5.8.3 Experimental Results of Determining Amplitude and Frequency -- 5.8.4 Sensorless Operation Performance -- 5.8.5 Pseudo-random Selection of Injection Signal -- 5.9 Transition Between Low Speed and High Speed -- 5.10 Summary -- References. Chapter 6 Saliency Tracking-Based Sensorless Control Method Using Zero Sequence Voltage -- 6.1 Introduction -- 6.2 Rotating Sinusoidal Signal Injection -- 6.2.1 Zero Sequence Voltage Model -- 6.2.2 Signal Demodulation -- 6.3 Conventional Pulsating Sinusoidal Signal Injection -- 6.4 Anti-rotating Pulsating Sinusoidal Signal Injection -- 6.4.1 Anti-rotating Signal Injection -- 6.4.2 Signal Demodulation -- 6.4.3 Cross-Saturation Effect -- 6.4.4 Experimental Results -- 6.4.4.1 Zero Sequence Voltage Model Verification -- 6.4.4.2 Steady- and Dynamic-State Position Estimation Performances -- 6.4.4.3 Robustness and Accuracy Comparison -- 6.5 Conventional Pulsating Square-Wave Signal Injection -- 6.6 Anti-rotating Pulsating Square-Wave Signal Injection -- 6.6.1 Anti-rotating Signal Injection -- 6.6.2 Signal Demodulation -- 6.6.3 Cross-Saturation Effect -- 6.6.4 Experimental Results -- 6.6.4.1 Zero Sequence Voltage Model Verification -- 6.6.4.2 Steady- and Dynamic-State Position Estimation Performance -- 6.6.4.3 Comparison to Square-Wave Injection Method with HF Current Sensing -- 6.7 Summary -- References -- Chapter 7 Sensorless Control of Dual Three-Phase PMSMs and Open-.Winding PMSMs -- 7.1 Introduction -- 7.2 Dual Three-Phase PMSMs -- 7.2.1 Modeling of DTP-PMSM Drive -- 7.2.1.1 Double dq Model -- 7.2.1.2 Vector Space Decomposition -- 7.2.2 HFSI Sensorless Control with Current Response -- 7.2.3 HFSI Sensorless Control with Voltage Response -- 7.2.3.1 Zero Sequence Voltage Measurement -- 7.2.3.2 Modeling of Dual Three-Phase PMSM -- 7.2.3.3 Pulsating Sinusoidal Signal Injection -- 7.2.3.4 Rotating Signal Injection Method -- 7.2.3.5 Experimental Results and Analysis for DTP-PMSM -- 7.2.4 Fundamental Model-Based Sensorless Control -- 7.2.4.1 Extended Back-EMF Model on DTP-PMSM -- 7.2.4.2 Parameter Mismatch Effect. 7.2.4.3 Parameter Mismatch Correction -- 7.2.4.4 Experimental Results -- 7.2.5 Third Harmonic Back-EMF-Based Sensorless Control -- 7.3 Open Winding PMSMs -- 7.3.1 Modeling of OW-PMSM Drive -- 7.3.2 Phase Shift-Based SVPWM for OW-PMSM -- 7.3.3 Zero Sequence Current-Based Sensorless Control -- 7.3.4 Nonparametric Zero Sequence Voltage-Based Sensorless Control -- 7.4 Summary -- References -- Chapter 8 Magnetic Polarity Identification -- 8.1 Introduction -- 8.2 Dual Voltage Pulses Injection-Based Method -- 8.3 d-Axis Current Injection-Based Method -- 8.3.1 HF Current Response -- 8.3.2 HF Zero Sequence Voltage Response -- 8.4 Secondary Harmonic-Based Method -- 8.4.1 Modeling of Secondary Harmonics -- 8.4.2 HF Current Response -- 8.4.3 HF Zero Sequence Voltage Response -- 8.4.4 Experiment Results -- 8.5 Summary -- References -- Chapter 9 Rotor Initial Position Estimation -- 9.1 Introduction -- 9.2 Magnetic Saturation Effect -- 9.3 Basic Pulse Injection Method Using Three Phase Currents -- 9.3.1 Pulse Excitation Configuration -- 9.3.2 Current Response Model -- 9.3.3 Initial Position Estimation -- 9.4 Improved Pulse Injection Method Using Three Phase Currents -- 9.4.1 Utilization of Three Phase Current Responses -- 9.4.2 Pulse Injection Sequence -- 9.4.3 Boundary Detection Strategy -- 9.4.4 Experiment Results -- 9.4.4.1 Estimation Example -- 9.4.4.2 Overall Rotor Initial Position Estimation Performance -- 9.4.4.3 Boundary Detection Performance -- 9.5 Pulse Injection Method Using DC-Link Voltage -- 9.5.1 Utilization of DC-Link Voltage Variation -- 9.5.2 Pulse Injection Process -- 9.5.3 Experiment Results -- 9.5.3.1 Estimation Example -- 9.5.3.2 Overall Estimation Performance -- 9.5.3.3 Comparison with Estimation Using Current Responses -- 9.6 Voltage Pulse Selection -- 9.6.1 Selection of Duration. 9.6.2 Selection of Magnitude. |
| Record Nr. | UNINA-9911019733103321 |
Zhu Ziqiang, Ph. D.
|
||
| Newark : , : John Wiley & Sons, Incorporated, , 2023 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||