Connectomics in NeuroImaging [[electronic resource] ] : Second International Workshop, CNI 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 20, 2018, Proceedings / / edited by Guorong Wu, Islem Rekik, Markus D. Schirmer, Ai Wern Chung, Brent Munsell |
Edizione | [1st ed. 2018.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018 |
Descrizione fisica | 1 online resource (X, 147 p. 56 illus.) |
Disciplina | 612.82 |
Collana | Image Processing, Computer Vision, Pattern Recognition, and Graphics |
Soggetto topico |
Artificial intelligence
Optical data processing Arithmetic and logic units, Computer Mathematical statistics Artificial Intelligence Image Processing and Computer Vision Arithmetic and Logic Structures Probability and Statistics in Computer Science |
ISBN | 3-030-00755-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Towards Ultra-high Resolution 3D Reconstruction of a Whole Rat Brain from 3D-PLI Data -- FOD-based Registration for Susceptibility Distortion Correction in Connectome Imaging -- GIFE: Efficient and Robust Group-wise Isometric Fiber Embedding -- Multi-Modal Brain Tensor Factorization: Preliminary Results with AD Patients -- Intact Connectional Morphometricity Learning Using Multi-View Morphological Brain Networks with Application to Autism Spectrum Disorder -- Neonatal Morphometric Similarity Networks Predict Atypical Brain Development Associated with Preterm Birth -- Heritability Estimation of Reliable Connectomic Features -- Topological Data Analysis of Functional MRI Connectivity in Time and Space Domains -- Riemannian Regression and Classification Models of Brain Networks Applied to Autism -- Defining Patient Specific Functional Parcellations in Lesional Cohorts via Markov Random Fields -- Data-Specific Feature Selection Method Identification for Most Reproducible Connectomic Feature Discovery Fingerprinting Brain States -- Towards Effective Functional Connectome Fingerprinting -- Connectivity-Driven Brain Parcellation via Consensus Clustering -- GRAND: Unbiased Connectome Atlas of Brain Network by Groupwise Graph Shrinkage and Network Diffusion -- Structural Subnetwork Evolution Across the Lifespan: Rich-club, Feeder, Seeder. |
Record Nr. | UNISA-996466205503316 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Connectomics in NeuroImaging : Second International Workshop, CNI 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 20, 2018, Proceedings / / edited by Guorong Wu, Islem Rekik, Markus D. Schirmer, Ai Wern Chung, Brent Munsell |
Edizione | [1st ed. 2018.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018 |
Descrizione fisica | 1 online resource (X, 147 p. 56 illus.) |
Disciplina |
612.82
616.80475 |
Collana | Image Processing, Computer Vision, Pattern Recognition, and Graphics |
Soggetto topico |
Artificial intelligence
Optical data processing Arithmetic and logic units, Computer Mathematical statistics Artificial Intelligence Image Processing and Computer Vision Arithmetic and Logic Structures Probability and Statistics in Computer Science |
ISBN | 3-030-00755-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Towards Ultra-high Resolution 3D Reconstruction of a Whole Rat Brain from 3D-PLI Data -- FOD-based Registration for Susceptibility Distortion Correction in Connectome Imaging -- GIFE: Efficient and Robust Group-wise Isometric Fiber Embedding -- Multi-Modal Brain Tensor Factorization: Preliminary Results with AD Patients -- Intact Connectional Morphometricity Learning Using Multi-View Morphological Brain Networks with Application to Autism Spectrum Disorder -- Neonatal Morphometric Similarity Networks Predict Atypical Brain Development Associated with Preterm Birth -- Heritability Estimation of Reliable Connectomic Features -- Topological Data Analysis of Functional MRI Connectivity in Time and Space Domains -- Riemannian Regression and Classification Models of Brain Networks Applied to Autism -- Defining Patient Specific Functional Parcellations in Lesional Cohorts via Markov Random Fields -- Data-Specific Feature Selection Method Identification for Most Reproducible Connectomic Feature Discovery Fingerprinting Brain States -- Towards Effective Functional Connectome Fingerprinting -- Connectivity-Driven Brain Parcellation via Consensus Clustering -- GRAND: Unbiased Connectome Atlas of Brain Network by Groupwise Graph Shrinkage and Network Diffusion -- Structural Subnetwork Evolution Across the Lifespan: Rich-club, Feeder, Seeder. |
Record Nr. | UNINA-9910349404903321 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Connectomics in NeuroImaging [[electronic resource] ] : First International Workshop, CNI 2017, Held in Conjunction with MICCAI 2017, Quebec City, QC, Canada, September 14, 2017, Proceedings / / edited by Guorong Wu, Paul Laurienti, Leonardo Bonilha, Brent C. Munsell |
Edizione | [1st ed. 2017.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017 |
Descrizione fisica | 1 online resource (VIII, 171 p. 67 illus.) |
Disciplina | 612.82 |
Collana | Image Processing, Computer Vision, Pattern Recognition, and Graphics |
Soggetto topico |
Optical data processing
Artificial intelligence Computer graphics Pattern recognition Computer organization Computer science—Mathematics Image Processing and Computer Vision Artificial Intelligence Computer Graphics Pattern Recognition Computer Systems Organization and Communication Networks Discrete Mathematics in Computer Science |
ISBN | 3-319-67159-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Organization -- Contents -- Connectome of Autistic Brains, Global Versus Local Characterization -- 1 Introduction -- 1.1 Connectomes and Autism Spectrum Disorder -- 1.2 Global Metrics -- 1.3 Local Connectivity Differences -- 2 Methods -- 3 Data and Experimental Settings -- 3.1 Pre-processing and Connectome Construction -- 3.2 Experimental Settings -- 4 Results and Discussions -- 5 Conclusion -- References -- Constructing Multi-frequency High-Order Functional Connectivity Network for Diagnosis of Mild Cognit ... -- Abstract -- 1 Introduction -- 2 Methods -- 2.1 Multi-frequency High-Order FC Networks -- 2.2 Feature Extraction and Classification -- 3 Experiments -- 3.1 Data -- 3.2 Performance Evaluation -- 3.3 Intra-spectrum and Inter-spectrum HONs -- 4 Conclusion -- Acknowledgements -- References -- Consciousness Level and Recovery Outcome Prediction Using High-Order Brain Functional Connectivity N ... -- Abstract -- 1 Introduction -- 2 Materials -- 3 High-Order BFCN Construction -- 4 Experiments -- 5 Conclusion -- Acknowledgements -- References -- Discriminative Log-Euclidean Kernels for Learning on Brain Networks -- 1 Introduction -- 2 Methods and Materials -- 2.1 Subjects -- 2.2 Image Data -- 2.3 Image Processing -- 2.4 Brain Network Construction -- 2.5 Gaussian Process Classification -- 2.6 The Discriminative Log-Euclidean Kernel -- 2.7 Impementation Details -- 2.8 Classification Experiments -- 2.9 Group Difference Experiments -- 3 Results and Discussion -- 4 Conclusions -- References -- Interactive Computation and Visualization of Structural Connectomes in Real-Time -- 1 Introduction -- 2 Methods -- 2.1 Structural Connectivity -- 3 Visualization -- 4 Results -- 5 Discussion -- 6 Conclusion -- References.
Pairing-based Ensemble Classifier Learning using Convolutional Brain Multiplexes and Multi-view Brain Networks for Early Dementia Diagnosis -- 1 Introduction -- 2 Ensemble Classifier Using Paired CCA-Mapped Convolutional Brain Mutliplexes for eMCI/NC Classification -- 3 Results and Discussion -- 4 Conclusion -- References -- High-order Connectomic Manifold Learning for Autistic Brain State Identification -- 1 Introduction -- 2 High-Order Connectomic Manifold Learning for Unsupervised Clustering of Autistic and Healthy Brains -- 3 Results and Discussion -- 4 Conclusion -- References -- A Unified Bayesian Approach to Extract Network-Based Functional Differences from a Heterogeneous Patient Cohort -- 1 Introduction -- 2 Generative Model of Abnormal Communities -- 3 Population Study of Autism -- 4 Conclusion -- References -- FCNet: A Convolutional Neural Network for Calculating Functional Connectivity from Functional MRI -- 1 Introduction -- 2 Method -- 2.1 Data and Preprocessing -- 2.2 Functional Connectivity Through FCNet -- 2.3 Feature Selection and Classification -- 3 Experiments and Results -- 4 Conclusion -- References -- Identifying Subnetwork Fingerprints in Structural Connectomes: A Data-Driven Approach -- Abstract -- 1 Introduction -- 2 Materials and Methods -- 2.1 Participants, MRI Acquisition, and Connectome Reconstruction -- 2.2 Subnetwork Feature -- 2.3 Person Identification Model and Performance Evaluation -- 2.4 Feature Selection and Majority Vote Subnetwork Feature -- 3 Results -- 4 Discussion -- 5 Conclusion -- Acknowledgement -- References -- A Simple and Efficient Cylinder Imposter Approach to Visualize DTI Fiber Tracts -- Abstract -- 1 Introduction -- 2 Proposed Method -- 2.1 Cylinder Imposter -- 2.2 End Imposter -- 3 Experiments -- 4 Limitations -- 5 Conclusion -- 6 Implementation -- References. Revisiting Abnormalities in Brain Network Architecture Underlying Autism Using Topology-Inspired Statistical Inference -- 1 Introduction -- 2 Technical Background -- 2.1 Structural Covariance Network -- 2.2 Graph Filtration -- 2.3 Statistical Inference -- 3 Methods -- 3.1 Data Preprocessing -- 3.2 Structural Covariance Networks and Statistical Inference -- 4 Results -- 5 Conclusion and Discussion -- References -- "Evaluating Acquisition Time of rfMRI in the Human Connectome Project for Early Psychosis. How Much ... -- Abstract -- 1 Introduction -- 2 Methods -- 2.1 Participants -- 2.2 Data Acquisition -- 2.3 Data Preprocessing -- 2.4 Statistical Analysis -- 3 Results -- 3.1 Correlation Matrix Reliability -- 3.2 Network Rank Reliability -- 4 Discussion and Conclusion -- Acknowledgments -- References -- Early Brain Functional Segregation and Integration Predict Later Cognitive Performance -- Abstract -- 1 Introduction -- 2 Methods and Results -- 2.1 An Early Developing Triple Network Model -- 2.2 Individual Prediction of Later Cognitive Performance -- 3 Discussion and Conclusions -- 4 Future Works and Clinical Implications -- References -- Measuring Brain Connectivity via Shape Analysis of fMRI Time Courses and Spectra -- 1 Introduction -- 2 FMRI Shape Analysis of Time Courses and Spectra -- 2.1 Elastic Functional Data Analysis of fMRI Signals Using SRVFs -- 2.2 fMRI Alignment and Registration: -- 3 Results -- 3.1 Visualization of Elastic Functional Alignment -- 3.2 Measuring Brain Connectivity After Elastic fMRI Alignment -- 4 Discussion -- References -- Topological Network Analysis of Electroencephalographic Power Maps -- 1 Introduction -- 2 Methods -- 3 Simulations -- 4 Real Data Application -- 5 Discussion -- References -- Region-Wise Stochastic Pattern Modeling for Autism Spectrum Disorder Identification and Temporal Dynamics Analysis. 1 Introduction -- 2 Materials and Image Processing -- 3 ROI-Wise Temporal Dynamics Estimation -- 3.1 ROI-Wise HMMs Modeling -- 3.2 Feature Extraction and Classifier Learning -- 3.3 Measuring Temporal Dynamics -- 4 Experimental Settings and Results -- 4.1 Choosing Optimal Number of States in HMMs -- 4.2 Performance Comparison -- 4.3 Regional Importance and Temporal Dynamics Analysis -- 5 Conclusion -- References -- A Whole-Brain Reconstruction Approach for FOD Modeling from Multi-Shell Diffusion MRI -- 1 Introduction -- 2 Method -- 2.1 Voxel-Wise FOD Modeling from Multi-Shell Imaging -- 2.2 Whole-Brain FOD Modeling with Spatial Regularity -- 2.3 Spatial Regularization via Hyper-spherical Smoothing -- 3 Experiments -- 3.1 Simulation -- 3.2 HCP Data for Locus Coeruleus Bundle Reconstruction -- 4 Discussion and Conclusion -- References -- Topological Distances Between Brain Networks -- 1 Introduction -- 2 Matrix Norms -- 3 Gromov-Hausdorff Distance -- 4 Kolmogorov-Smirnov Distance -- 5 Comparisons -- 6 Application -- 7 Discussion -- References -- Author Index. |
Record Nr. | UNISA-996466266203316 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Connectomics in NeuroImaging : First International Workshop, CNI 2017, Held in Conjunction with MICCAI 2017, Quebec City, QC, Canada, September 14, 2017, Proceedings / / edited by Guorong Wu, Paul Laurienti, Leonardo Bonilha, Brent C. Munsell |
Edizione | [1st ed. 2017.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017 |
Descrizione fisica | 1 online resource (VIII, 171 p. 67 illus.) |
Disciplina | 612.82 |
Collana | Image Processing, Computer Vision, Pattern Recognition, and Graphics |
Soggetto topico |
Optical data processing
Artificial intelligence Computer graphics Pattern recognition Computer organization Computer science—Mathematics Image Processing and Computer Vision Artificial Intelligence Computer Graphics Pattern Recognition Computer Systems Organization and Communication Networks Discrete Mathematics in Computer Science |
ISBN | 3-319-67159-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Organization -- Contents -- Connectome of Autistic Brains, Global Versus Local Characterization -- 1 Introduction -- 1.1 Connectomes and Autism Spectrum Disorder -- 1.2 Global Metrics -- 1.3 Local Connectivity Differences -- 2 Methods -- 3 Data and Experimental Settings -- 3.1 Pre-processing and Connectome Construction -- 3.2 Experimental Settings -- 4 Results and Discussions -- 5 Conclusion -- References -- Constructing Multi-frequency High-Order Functional Connectivity Network for Diagnosis of Mild Cognit ... -- Abstract -- 1 Introduction -- 2 Methods -- 2.1 Multi-frequency High-Order FC Networks -- 2.2 Feature Extraction and Classification -- 3 Experiments -- 3.1 Data -- 3.2 Performance Evaluation -- 3.3 Intra-spectrum and Inter-spectrum HONs -- 4 Conclusion -- Acknowledgements -- References -- Consciousness Level and Recovery Outcome Prediction Using High-Order Brain Functional Connectivity N ... -- Abstract -- 1 Introduction -- 2 Materials -- 3 High-Order BFCN Construction -- 4 Experiments -- 5 Conclusion -- Acknowledgements -- References -- Discriminative Log-Euclidean Kernels for Learning on Brain Networks -- 1 Introduction -- 2 Methods and Materials -- 2.1 Subjects -- 2.2 Image Data -- 2.3 Image Processing -- 2.4 Brain Network Construction -- 2.5 Gaussian Process Classification -- 2.6 The Discriminative Log-Euclidean Kernel -- 2.7 Impementation Details -- 2.8 Classification Experiments -- 2.9 Group Difference Experiments -- 3 Results and Discussion -- 4 Conclusions -- References -- Interactive Computation and Visualization of Structural Connectomes in Real-Time -- 1 Introduction -- 2 Methods -- 2.1 Structural Connectivity -- 3 Visualization -- 4 Results -- 5 Discussion -- 6 Conclusion -- References.
Pairing-based Ensemble Classifier Learning using Convolutional Brain Multiplexes and Multi-view Brain Networks for Early Dementia Diagnosis -- 1 Introduction -- 2 Ensemble Classifier Using Paired CCA-Mapped Convolutional Brain Mutliplexes for eMCI/NC Classification -- 3 Results and Discussion -- 4 Conclusion -- References -- High-order Connectomic Manifold Learning for Autistic Brain State Identification -- 1 Introduction -- 2 High-Order Connectomic Manifold Learning for Unsupervised Clustering of Autistic and Healthy Brains -- 3 Results and Discussion -- 4 Conclusion -- References -- A Unified Bayesian Approach to Extract Network-Based Functional Differences from a Heterogeneous Patient Cohort -- 1 Introduction -- 2 Generative Model of Abnormal Communities -- 3 Population Study of Autism -- 4 Conclusion -- References -- FCNet: A Convolutional Neural Network for Calculating Functional Connectivity from Functional MRI -- 1 Introduction -- 2 Method -- 2.1 Data and Preprocessing -- 2.2 Functional Connectivity Through FCNet -- 2.3 Feature Selection and Classification -- 3 Experiments and Results -- 4 Conclusion -- References -- Identifying Subnetwork Fingerprints in Structural Connectomes: A Data-Driven Approach -- Abstract -- 1 Introduction -- 2 Materials and Methods -- 2.1 Participants, MRI Acquisition, and Connectome Reconstruction -- 2.2 Subnetwork Feature -- 2.3 Person Identification Model and Performance Evaluation -- 2.4 Feature Selection and Majority Vote Subnetwork Feature -- 3 Results -- 4 Discussion -- 5 Conclusion -- Acknowledgement -- References -- A Simple and Efficient Cylinder Imposter Approach to Visualize DTI Fiber Tracts -- Abstract -- 1 Introduction -- 2 Proposed Method -- 2.1 Cylinder Imposter -- 2.2 End Imposter -- 3 Experiments -- 4 Limitations -- 5 Conclusion -- 6 Implementation -- References. Revisiting Abnormalities in Brain Network Architecture Underlying Autism Using Topology-Inspired Statistical Inference -- 1 Introduction -- 2 Technical Background -- 2.1 Structural Covariance Network -- 2.2 Graph Filtration -- 2.3 Statistical Inference -- 3 Methods -- 3.1 Data Preprocessing -- 3.2 Structural Covariance Networks and Statistical Inference -- 4 Results -- 5 Conclusion and Discussion -- References -- "Evaluating Acquisition Time of rfMRI in the Human Connectome Project for Early Psychosis. How Much ... -- Abstract -- 1 Introduction -- 2 Methods -- 2.1 Participants -- 2.2 Data Acquisition -- 2.3 Data Preprocessing -- 2.4 Statistical Analysis -- 3 Results -- 3.1 Correlation Matrix Reliability -- 3.2 Network Rank Reliability -- 4 Discussion and Conclusion -- Acknowledgments -- References -- Early Brain Functional Segregation and Integration Predict Later Cognitive Performance -- Abstract -- 1 Introduction -- 2 Methods and Results -- 2.1 An Early Developing Triple Network Model -- 2.2 Individual Prediction of Later Cognitive Performance -- 3 Discussion and Conclusions -- 4 Future Works and Clinical Implications -- References -- Measuring Brain Connectivity via Shape Analysis of fMRI Time Courses and Spectra -- 1 Introduction -- 2 FMRI Shape Analysis of Time Courses and Spectra -- 2.1 Elastic Functional Data Analysis of fMRI Signals Using SRVFs -- 2.2 fMRI Alignment and Registration: -- 3 Results -- 3.1 Visualization of Elastic Functional Alignment -- 3.2 Measuring Brain Connectivity After Elastic fMRI Alignment -- 4 Discussion -- References -- Topological Network Analysis of Electroencephalographic Power Maps -- 1 Introduction -- 2 Methods -- 3 Simulations -- 4 Real Data Application -- 5 Discussion -- References -- Region-Wise Stochastic Pattern Modeling for Autism Spectrum Disorder Identification and Temporal Dynamics Analysis. 1 Introduction -- 2 Materials and Image Processing -- 3 ROI-Wise Temporal Dynamics Estimation -- 3.1 ROI-Wise HMMs Modeling -- 3.2 Feature Extraction and Classifier Learning -- 3.3 Measuring Temporal Dynamics -- 4 Experimental Settings and Results -- 4.1 Choosing Optimal Number of States in HMMs -- 4.2 Performance Comparison -- 4.3 Regional Importance and Temporal Dynamics Analysis -- 5 Conclusion -- References -- A Whole-Brain Reconstruction Approach for FOD Modeling from Multi-Shell Diffusion MRI -- 1 Introduction -- 2 Method -- 2.1 Voxel-Wise FOD Modeling from Multi-Shell Imaging -- 2.2 Whole-Brain FOD Modeling with Spatial Regularity -- 2.3 Spatial Regularization via Hyper-spherical Smoothing -- 3 Experiments -- 3.1 Simulation -- 3.2 HCP Data for Locus Coeruleus Bundle Reconstruction -- 4 Discussion and Conclusion -- References -- Topological Distances Between Brain Networks -- 1 Introduction -- 2 Matrix Norms -- 3 Gromov-Hausdorff Distance -- 4 Kolmogorov-Smirnov Distance -- 5 Comparisons -- 6 Application -- 7 Discussion -- References -- Author Index. |
Record Nr. | UNINA-9910483163803321 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Machine Learning in Medical Imaging [[electronic resource] ] : 5th International Workshop, MLMI 2014, Held in Conjunction with MICCAI 2014, Boston, MA, USA, September 14, 2014, Proceedings / / edited by Guorong Wu, Daoqiang Zhang, Luping Zhou |
Edizione | [1st ed. 2014.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2014 |
Descrizione fisica | 1 online resource (XII, 332 p. 136 illus.) |
Disciplina | 610.285 |
Collana | Image Processing, Computer Vision, Pattern Recognition, and Graphics |
Soggetto topico |
Optical data processing
Pattern recognition Health informatics Data mining Artificial intelligence Computer graphics Image Processing and Computer Vision Pattern Recognition Health Informatics Data Mining and Knowledge Discovery Artificial Intelligence Computer Graphics |
ISBN | 3-319-10581-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Sparsity-Learning-Based Longitudinal MR Image Registration for Early Brain Development -- Graph-Based Label Propagation in Fetal brain MR Images -- Deep Learning Based Automatic immune Cell Detection for Immunohistochemistry Images -- Stacked Multiscale Feature learning for Domain Independent Medical Image Segmentation -- Detection of Mammographic Masses by Content-Based Image Retrieval -- Inferring Sources of Dementia Progression with Network Diffusion Model -- 3D Intervertebral Disc Localization through Representation Learning with Knowledge Transfer -- Exploring Compact Representation of SICE Matrices for Functional Brain Network Classification -- Deep Learning for Cerebellar Ataxia Classification and Functional Score Regression -- Manifold Alignment and Transfer Learning for Classification of Alzheimer’s Disease -- Gleason Grading of Prostate Tumors with Max-Margin Conditional Random Fields -- Learning Distance Transform for Boundary Detection and Deformable Segmentation in CT Prostate Images -- Geodesic Geometric mean of Regional Covariance Descriptors as an Image-Level Descriptor for nuclear Atypia Grading in Breast Images -- A constrained Regression Forests Solution to 3D Fetal Ultrasound Plane Localization for Longitudinal Analysis of Brain Growth and Maturation -- Deep Learning of Image Features from Unlabeled Data for Multiple Sclerosis Lesion Segmentation -- Fetal Abdominal Standard Plane Localization through Representation Learning with Knowledge Transfer -- Searching for Structures of Interest in an Ultrasound Video Sequence -- Anatomically Constrained Weak Classifier Fusion for Early Detection of Alzheimer’s Disease -- Automatic Bone and Marrow Extraction from Dual Energy CT through SVM Margin-Based Multi-Material Decomposition Model Selection -- Sparse Discriminative Feature Selection for Multi-Class Alzheimer’s Disease Classification -- Context-aware Anatomical Landmark Detection: Application to Deformable Model Initialization in Prostate CT Images -- Optimal MAP Parameters Estimation in STAPLE-Learning from Performance Parameters versus Image Similarity Information -- Colon Biopsy Classification Using Crypt Architecture -- Network Guided Group Feature Selection for Classification of Autism Spectrum Disorder -- Deformation Field Correction for Spatial Normalization of PET Images Using a Population-derived Partial Least Squares Model -- Novel Multi-Atlas Segmentation by Matrix Completion -- Structured Random Forest for Myocardium Delineation in 3D Echocardiography -- Improved Reproducibility of Neuroanatomical Definition through Diffeomorphometry and Complexity Reduction -- Topological Descriptors of Histology Images -- Robust Deep Learning for Improved Classification of AD/MCI Patients -- Subject Specific Sparse Dictionary Learning for Atlas Based Brain MRI Segmentation -- Online Discriminative Multi-Atlas Learning with Application to Isointense Infant Brain Segmentation. . |
Record Nr. | UNISA-996215312403316 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2014 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Machine Learning in Medical Imaging : 5th International Workshop, MLMI 2014, Held in Conjunction with MICCAI 2014, Boston, MA, USA, September 14, 2014, Proceedings / / edited by Guorong Wu, Daoqiang Zhang, Luping Zhou |
Edizione | [1st ed. 2014.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2014 |
Descrizione fisica | 1 online resource (XII, 332 p. 136 illus.) |
Disciplina | 610.285 |
Collana | Image Processing, Computer Vision, Pattern Recognition, and Graphics |
Soggetto topico |
Optical data processing
Pattern recognition Health informatics Data mining Artificial intelligence Computer graphics Image Processing and Computer Vision Pattern Recognition Health Informatics Data Mining and Knowledge Discovery Artificial Intelligence Computer Graphics |
ISBN | 3-319-10581-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Sparsity-Learning-Based Longitudinal MR Image Registration for Early Brain Development -- Graph-Based Label Propagation in Fetal brain MR Images -- Deep Learning Based Automatic immune Cell Detection for Immunohistochemistry Images -- Stacked Multiscale Feature learning for Domain Independent Medical Image Segmentation -- Detection of Mammographic Masses by Content-Based Image Retrieval -- Inferring Sources of Dementia Progression with Network Diffusion Model -- 3D Intervertebral Disc Localization through Representation Learning with Knowledge Transfer -- Exploring Compact Representation of SICE Matrices for Functional Brain Network Classification -- Deep Learning for Cerebellar Ataxia Classification and Functional Score Regression -- Manifold Alignment and Transfer Learning for Classification of Alzheimer’s Disease -- Gleason Grading of Prostate Tumors with Max-Margin Conditional Random Fields -- Learning Distance Transform for Boundary Detection and Deformable Segmentation in CT Prostate Images -- Geodesic Geometric mean of Regional Covariance Descriptors as an Image-Level Descriptor for nuclear Atypia Grading in Breast Images -- A constrained Regression Forests Solution to 3D Fetal Ultrasound Plane Localization for Longitudinal Analysis of Brain Growth and Maturation -- Deep Learning of Image Features from Unlabeled Data for Multiple Sclerosis Lesion Segmentation -- Fetal Abdominal Standard Plane Localization through Representation Learning with Knowledge Transfer -- Searching for Structures of Interest in an Ultrasound Video Sequence -- Anatomically Constrained Weak Classifier Fusion for Early Detection of Alzheimer’s Disease -- Automatic Bone and Marrow Extraction from Dual Energy CT through SVM Margin-Based Multi-Material Decomposition Model Selection -- Sparse Discriminative Feature Selection for Multi-Class Alzheimer’s Disease Classification -- Context-aware Anatomical Landmark Detection: Application to Deformable Model Initialization in Prostate CT Images -- Optimal MAP Parameters Estimation in STAPLE-Learning from Performance Parameters versus Image Similarity Information -- Colon Biopsy Classification Using Crypt Architecture -- Network Guided Group Feature Selection for Classification of Autism Spectrum Disorder -- Deformation Field Correction for Spatial Normalization of PET Images Using a Population-derived Partial Least Squares Model -- Novel Multi-Atlas Segmentation by Matrix Completion -- Structured Random Forest for Myocardium Delineation in 3D Echocardiography -- Improved Reproducibility of Neuroanatomical Definition through Diffeomorphometry and Complexity Reduction -- Topological Descriptors of Histology Images -- Robust Deep Learning for Improved Classification of AD/MCI Patients -- Subject Specific Sparse Dictionary Learning for Atlas Based Brain MRI Segmentation -- Online Discriminative Multi-Atlas Learning with Application to Isointense Infant Brain Segmentation. . |
Record Nr. | UNINA-9910481958303321 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2014 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Machine Learning in Medical Imaging [[electronic resource] ] : 4th International Workshop, MLMI 2013, Held in Conjunction with MICCAI 2013, Nagoya, Japan, September 22, 2013, Proceedings / / edited by Guorong Wu, Daoqiang Zhang, Dinggang Shen, Pingkun Yan, Kenji Suzuki, Fei Wang |
Edizione | [1st ed. 2013.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2013 |
Descrizione fisica | 1 online resource (XII, 262 p. 94 illus.) |
Disciplina |
006.6
006.37 |
Collana | Image Processing, Computer Vision, Pattern Recognition, and Graphics |
Soggetto topico |
Optical data processing
Pattern recognition Artificial intelligence Database management Computer graphics Image Processing and Computer Vision Pattern Recognition Artificial Intelligence Computer Imaging, Vision, Pattern Recognition and Graphics Database Management Computer Graphics |
ISBN | 3-319-02267-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Unsupervised Deep Learning for Hippocampus Segmentation in 7.0 Tesla MR Images -- Integrating Multiple Network Properties for MCI Identification -- Learning-Boosted Label Fusion for Multi-atlas Auto-Segmentation -- Volumetric Segmentation of Key Fetal Brain Structures in 3D Ultrasound -- Sparse Classification with MRI Based Markers for Neuromuscular Disease Categorization -- Fully Automatic Detection of the Carotid Artery from Volumetric Ultrasound Images Using Anatomical Position-Dependent LBP Features -- A Transfer-Learning Approach to Image Segmentation Across Scanners by Maximizing Distribution Similarity -- A New Algorithm of Electronic Cleansing for Weak Faecal-Tagging CT Colonography -- A Unified Approach to Shape Model Fitting and Non-rigid Registration -- A Bayesian Algorithm for Image-Based Time-to-Event Prediction -- Patient-Specific Manifold Embedding of Multispectral Images Using Kernel Combinations -- fMRI Analysis with Sparse Weisfeiler-Lehman Graph Statistics -- Patch-Based Segmentation without Registration: Application to Knee MRI -- Flow-Based Correspondence Matching in Stereovision -- Thickness NETwork (ThickNet) Features for the Detection of Prodromal AD -- Metric Space Structures for Computational Anatomy -- Discriminative Group Sparse Representation for Mild Cognitive Impairment Classification -- Temporally Dynamic Resting-State Functional Connectivity Networks for Early MCI Identification -- An Improved Optimization Method for the Relevance Voxel Machine -- Disentanglement of Session and Plasticity Effects in Longitudinal fMRI Studies -- Identification of Alzheimer’s Disease Using Incomplete Multimodal Dataset via Matrix Shrinkage and Completion -- On Feature Relevance in Image-Based Prediction Models: An Empirical Study -- Decision Forests with Spatio-Temporal Features for Graph-Based Tumor Segmentation in 4D Lung CT -- Improving Probabilistic Image Registration via Reinforcement Learning and Uncertainty Evaluation -- HEp-2 Cell Image Classification: A Comparative Analysis -- A 2.5D Colon Wall Flattening Model for CT-Based Virtual Colonoscopy -- Augmenting Auto-context with Global Geometric Features for Spinal Cord Segmentation -- Large-Scale Manifold Learning Using an Adaptive Sparse Neighbor Selection Approach for Brain Tumor Progression Prediction -- Ensemble Universum SVM Learning for Multimodal Classification of Alzheimer’s Disease -- Joint Sparse Coding Spatial Pyramid Matching for Classification of Color Blood Cell Image -- Multi-task Sparse Classifier for Diagnosis of MCI Conversion to AD with Longitudinal MR Images -- Sparse Multimodal Manifold-Regularized Transfer Learning for MCI Conversion Prediction. |
Record Nr. | UNISA-996466031503316 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2013 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Machine Learning in Medical Imaging : 4th International Workshop, MLMI 2013, Held in Conjunction with MICCAI 2013, Nagoya, Japan, September 22, 2013, Proceedings / / edited by Guorong Wu, Daoqiang Zhang, Dinggang Shen, Pingkun Yan, Kenji Suzuki, Fei Wang |
Edizione | [1st ed. 2013.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2013 |
Descrizione fisica | 1 online resource (XII, 262 p. 94 illus.) |
Disciplina |
006.6
006.37 |
Collana | Image Processing, Computer Vision, Pattern Recognition, and Graphics |
Soggetto topico |
Optical data processing
Pattern recognition Artificial intelligence Database management Computer graphics Image Processing and Computer Vision Pattern Recognition Artificial Intelligence Computer Imaging, Vision, Pattern Recognition and Graphics Database Management Computer Graphics |
ISBN | 3-319-02267-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Unsupervised Deep Learning for Hippocampus Segmentation in 7.0 Tesla MR Images -- Integrating Multiple Network Properties for MCI Identification -- Learning-Boosted Label Fusion for Multi-atlas Auto-Segmentation -- Volumetric Segmentation of Key Fetal Brain Structures in 3D Ultrasound -- Sparse Classification with MRI Based Markers for Neuromuscular Disease Categorization -- Fully Automatic Detection of the Carotid Artery from Volumetric Ultrasound Images Using Anatomical Position-Dependent LBP Features -- A Transfer-Learning Approach to Image Segmentation Across Scanners by Maximizing Distribution Similarity -- A New Algorithm of Electronic Cleansing for Weak Faecal-Tagging CT Colonography -- A Unified Approach to Shape Model Fitting and Non-rigid Registration -- A Bayesian Algorithm for Image-Based Time-to-Event Prediction -- Patient-Specific Manifold Embedding of Multispectral Images Using Kernel Combinations -- fMRI Analysis with Sparse Weisfeiler-Lehman Graph Statistics -- Patch-Based Segmentation without Registration: Application to Knee MRI -- Flow-Based Correspondence Matching in Stereovision -- Thickness NETwork (ThickNet) Features for the Detection of Prodromal AD -- Metric Space Structures for Computational Anatomy -- Discriminative Group Sparse Representation for Mild Cognitive Impairment Classification -- Temporally Dynamic Resting-State Functional Connectivity Networks for Early MCI Identification -- An Improved Optimization Method for the Relevance Voxel Machine -- Disentanglement of Session and Plasticity Effects in Longitudinal fMRI Studies -- Identification of Alzheimer’s Disease Using Incomplete Multimodal Dataset via Matrix Shrinkage and Completion -- On Feature Relevance in Image-Based Prediction Models: An Empirical Study -- Decision Forests with Spatio-Temporal Features for Graph-Based Tumor Segmentation in 4D Lung CT -- Improving Probabilistic Image Registration via Reinforcement Learning and Uncertainty Evaluation -- HEp-2 Cell Image Classification: A Comparative Analysis -- A 2.5D Colon Wall Flattening Model for CT-Based Virtual Colonoscopy -- Augmenting Auto-context with Global Geometric Features for Spinal Cord Segmentation -- Large-Scale Manifold Learning Using an Adaptive Sparse Neighbor Selection Approach for Brain Tumor Progression Prediction -- Ensemble Universum SVM Learning for Multimodal Classification of Alzheimer’s Disease -- Joint Sparse Coding Spatial Pyramid Matching for Classification of Color Blood Cell Image -- Multi-task Sparse Classifier for Diagnosis of MCI Conversion to AD with Longitudinal MR Images -- Sparse Multimodal Manifold-Regularized Transfer Learning for MCI Conversion Prediction. |
Record Nr. | UNINA-9910482954003321 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2013 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Patch-Based Techniques in Medical Imaging [[electronic resource] ] : 4th International Workshop, Patch-MI 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 20, 2018, Proceedings / / edited by Wenjia Bai, Gerard Sanroma, Guorong Wu, Brent C. Munsell, Yiqiang Zhan, Pierrick Coupé |
Edizione | [1st ed. 2018.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018 |
Descrizione fisica | 1 online resource (X, 145 p. 53 illus.) |
Disciplina | 616.07540285 |
Collana | Image Processing, Computer Vision, Pattern Recognition, and Graphics |
Soggetto topico |
Optical data processing
Health informatics Artificial intelligence Computers Image Processing and Computer Vision Health Informatics Artificial Intelligence Information Systems and Communication Service |
ISBN | 3-030-00500-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Image Denoising -- Image Registration and Matching -- Image Classification and Detection -- Brain Image Analysis -- Retinal Image Analysis. |
Record Nr. | UNISA-996466331003316 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Patch-Based Techniques in Medical Imaging : 4th International Workshop, Patch-MI 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 20, 2018, Proceedings / / edited by Wenjia Bai, Gerard Sanroma, Guorong Wu, Brent C. Munsell, Yiqiang Zhan, Pierrick Coupé |
Edizione | [1st ed. 2018.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018 |
Descrizione fisica | 1 online resource (X, 145 p. 53 illus.) |
Disciplina |
616.07540285
616.0757 |
Collana | Image Processing, Computer Vision, Pattern Recognition, and Graphics |
Soggetto topico |
Optical data processing
Health informatics Artificial intelligence Computers Image Processing and Computer Vision Health Informatics Artificial Intelligence Information Systems and Communication Service |
ISBN | 3-030-00500-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Image Denoising -- Image Registration and Matching -- Image Classification and Detection -- Brain Image Analysis -- Retinal Image Analysis. |
Record Nr. | UNINA-9910349403603321 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|