Left Atrial and Scar Quantification and Segmentation [[electronic resource] ] : First Challenge, LAScarQS 2022, Held in Conjunction with MICCAI 2022, Singapore, September 18, 2022, Proceedings / / edited by Xiahai Zhuang, Lei Li, Sihan Wang, Fuping Wu |
Autore | Zhuang Xiahai |
Edizione | [1st ed. 2023.] |
Pubbl/distr/stampa | Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023 |
Descrizione fisica | 1 online resource (174 pages) |
Disciplina | 006 |
Altri autori (Persone) |
LiLei
WangSihan WuFuping |
Collana | Lecture Notes in Computer Science |
Soggetto topico |
Image processing—Digital techniques
Computer vision Computer Imaging, Vision, Pattern Recognition and Graphics |
ISBN | 3-031-31778-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | LASSNet: A four steps deep neural network for Left Atrial Segmentation and Scar Quantification -- Multi-Depth Boundary-Aware Left Atrial Scar Segmentation Network -- Self Pre-training with Single-scale Adapter for Left Atrial Segmentation -- UGformer for Robust Left Atrium and Scar Segmentation Across Scanners -- Automatically Segmenting the Left Atrium and Scars from LGE-MRIs Using a boundary-focused nnU-Net -- Two Stage of Histogram Matching Augmentation for Domain Generalization : Application to Left Atrial Segmentation -- Sequential Segmentation of the Left Atrium and Atrial Scars Using a Multi-scale Weight Sharing Network and Boundary-based Processing -- LA-HRNet: High-resolution network for automatic left atrial segmentation in multi-center LEG MRI -- Edge-enhanced Features Guided Joint Segmentation and Quantification of Left Atrium and Scars in LGE MRI Images -- TESSLA: Two-Stage Ensemble Scar Segmentation for the Left Atrium -- Deep U-Net architecture with curriculum learning for left atrial segmentation -- Cross-domain Segmentation of Left Atrium Based on Multi-scale Decision Level Fusion -- Using Polynomial Loss and Uncertainty Information for Robust Left Atrial and Scar Quantification and Segmentation -- Automated segmentation of the left atrium and scar using deep convolutional neural networks -- Automatic Semi-Supervised Left Atrial Segmentation using Deep-Supervision 3DResUnet with Pseudo Labeling Approach for LAScarQS 2022 Challenge. |
Record Nr. | UNISA-996534467303316 |
Zhuang Xiahai | ||
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Left Atrial and Scar Quantification and Segmentation : First Challenge, LAScarQS 2022, Held in Conjunction with MICCAI 2022, Singapore, September 18, 2022, Proceedings / / edited by Xiahai Zhuang, Lei Li, Sihan Wang, Fuping Wu |
Autore | Zhuang Xiahai |
Edizione | [1st ed. 2023.] |
Pubbl/distr/stampa | Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023 |
Descrizione fisica | 1 online resource (174 pages) |
Disciplina |
006
616.120754 |
Altri autori (Persone) |
LiLei
WangSihan WuFuping |
Collana | Lecture Notes in Computer Science |
Soggetto topico |
Image processing—Digital techniques
Computer vision Computer Imaging, Vision, Pattern Recognition and Graphics |
ISBN | 3-031-31778-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | LASSNet: A four steps deep neural network for Left Atrial Segmentation and Scar Quantification -- Multi-Depth Boundary-Aware Left Atrial Scar Segmentation Network -- Self Pre-training with Single-scale Adapter for Left Atrial Segmentation -- UGformer for Robust Left Atrium and Scar Segmentation Across Scanners -- Automatically Segmenting the Left Atrium and Scars from LGE-MRIs Using a boundary-focused nnU-Net -- Two Stage of Histogram Matching Augmentation for Domain Generalization : Application to Left Atrial Segmentation -- Sequential Segmentation of the Left Atrium and Atrial Scars Using a Multi-scale Weight Sharing Network and Boundary-based Processing -- LA-HRNet: High-resolution network for automatic left atrial segmentation in multi-center LEG MRI -- Edge-enhanced Features Guided Joint Segmentation and Quantification of Left Atrium and Scars in LGE MRI Images -- TESSLA: Two-Stage Ensemble Scar Segmentation for the Left Atrium -- Deep U-Net architecture with curriculum learning for left atrial segmentation -- Cross-domain Segmentation of Left Atrium Based on Multi-scale Decision Level Fusion -- Using Polynomial Loss and Uncertainty Information for Robust Left Atrial and Scar Quantification and Segmentation -- Automated segmentation of the left atrium and scar using deep convolutional neural networks -- Automatic Semi-Supervised Left Atrial Segmentation using Deep-Supervision 3DResUnet with Pseudo Labeling Approach for LAScarQS 2022 Challenge. |
Record Nr. | UNINA-9910720070703321 |
Zhuang Xiahai | ||
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|