top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Lean and Cleaner Production [[electronic resource] ] : Applications in Prefabrication to Reduce Carbon Emissions / / by Peng Wu, Sui Pheng Low
Lean and Cleaner Production [[electronic resource] ] : Applications in Prefabrication to Reduce Carbon Emissions / / by Peng Wu, Sui Pheng Low
Autore Wu Peng
Edizione [1st ed. 2013.]
Pubbl/distr/stampa Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2013
Descrizione fisica 1 online resource (362 p.)
Disciplina 330
333.7
658.4/08
658.5
Soggetto topico Production management
Environmental economics
Production
Environmental Economics
ISBN 3-642-42062-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction -- Sustainable Development and Global Climate Change -- Lean Production Philosophy -- The Precast Concrete Industry -- Modelling the Lean Production Philosophy -- Research Design and Methodology -- Applications in Precast Concrete Factories -- Case study of a Precast Concrete Factory -- Precast Concrete Products in Construction Sites -- Case study of a Construction Site -- Carbon Labelling and Reflections -- Conclusions and Recommendations -- References.
Record Nr. UNINA-9910438071603321
Wu Peng  
Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Micro-Mesoporous Metallosilicates : Synthesis, Characterization, and Catalytic Applications
Micro-Mesoporous Metallosilicates : Synthesis, Characterization, and Catalytic Applications
Autore Wu Peng
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2024
Descrizione fisica 1 online resource (493 pages)
Altri autori (Persone) XuHao
ISBN 3-527-83938-0
3-527-83936-4
3-527-83937-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Synthesis of Titanosilicates -- 1.1 Introduction -- 1.2 Synthesis of Medium‐Pore Titanosilicates -- 1.2.1 TS‐1 Synthesis -- 1.2.2 Ti‐MWW Synthesis -- 1.2.3 TS‐2 Synthesis -- 1.2.4 Synthesis of Other Medium‐Pore Titanosilicates -- 1.3 Synthesis of Large‐Pore Titanosilicates -- 1.3.1 Ti‐Beta Synthesis -- 1.3.2 Ti‐MOR Synthesis -- 1.3.3 Ti‐MSE Synthesis -- 1.3.4 Synthesis of Other Large‐Pore Titanosilicates -- 1.4 Synthesis of Extra‐Large‐Pore Titanosilicates -- 1.5 Synthesis of Mesoporous Titanosilicates -- 1.6 Synthesis of ETSs -- 1.7 Conclusions -- References -- Chapter 2 Layered Heteroatom‐Containing Zeolites -- 2.1 Introduction -- 2.2 Traditional Layered Heteroatom‐Containing Zeolites -- 2.2.1 Heteroatom‐Containing MWW‐Type Layered Zeolites and Their Derivative Zeolitic Materials -- 2.2.2 Heteroatom‐Containing Layered Zeolites Built from fer‐Layers -- 2.3 Novel Layered Heteroatom‐Containing Zeolites -- 2.3.1 Heteroatom‐Containing MFI‐Type Layered Zeolites -- 2.3.2 Germanosilicate‐Derived Heteroatom‐Containing Zeolites -- 2.4 Conclusions -- Acknowledgments -- References -- Chapter 3 Synthesis and Catalytic Applications of Sn‐ and Zr‐Zeolites -- 3.1 Introduction -- 3.2 Synthesis of Sn‐ and Zr‐Zeolites -- 3.2.1 Bottom‐up Approaches -- 3.2.1.1 Hydrothermal Synthesis -- 3.2.1.2 Dry‐Gel Conversion Methods -- 3.2.1.3 Interzeolite Transformation -- 3.2.1.4 Structural Reconstruction Strategy -- 3.2.2 Top‐Down Approaches -- 3.2.2.1 Direct Metalation -- 3.2.2.2 Demetallation-Metalation -- 3.3 General Remarks -- 3.4 Catalytic Applications of Sn‐ and Zr‐Zeolites -- 3.4.1 Redox Catalysis -- 3.4.1.1 Baeyer-Villiger Oxidation -- 3.4.1.2 Meerwein-Ponndorf-Verley Redox -- 3.4.2 Lewis Acid Catalysis -- 3.4.2.1 Ring Opening of Epoxides -- 3.4.2.2 Aldol Reaction -- 3.4.2.3 Propane Dehydrogenation.
3.4.3 Biomass Conversion -- 3.4.3.1 Sugar Isomerization -- 3.4.3.2 5‐(Hydroxymethyl)Furfural (HMF) Synthesis -- 3.4.3.3 Synthesis of Lactic Acid or Alkyl Lactates -- 3.4.3.4 γ‐Valerolactone Synthesis -- 3.5 General Remarks -- References -- Chapter 4 Synthesis of Germanosilicates -- 4.1 Introduction -- 4.1.1 General Property of Ge/Si Oxides -- 4.1.2 Germanosilicate Glass -- 4.2 Isomorphous Substitution in Germanosilicates -- 4.2.1 Isomorphous Substitution Si in Germanate -- 4.2.2 Isomorphous Substitution Ge in Silicates -- 4.3 Inorganic Structure‐Directing Effects -- 4.3.1 Structure‐Directing Effects of Ge -- 4.3.2 Structure‐Directing Effects of F− -- 4.4 Organic Structure‐Directing Agents in Germanosilicate Synthesis -- 4.4.1 Organic Structure‐Directing Agent Types and Revolutions -- 4.4.2 Two Important Families of OSDA -- 4.5 Structure Diversity of Germanosilicates/Silicogermanates -- 4.5.1 Relationship Between Composition and Structure -- 4.5.2 Pore Opening -- 4.6 Possibility of Elimination of Ge and Catalytic Research of Germanosilicates -- 4.6.1 The Price Concern of Ge -- 4.6.2 Removal of Ge in Zeolite Synthesis -- 4.6.3 Removal of Ge with Post‐synthesis -- 4.6.4 Catalytic Research of Germanosilicates -- 4.7 Conclusions and Outlook -- References -- Chapter 5 Structural Modifications on Germanosilicates -- 5.1 Introduction -- 5.2 Germanosilicates to Layered Precursors -- 5.2.1 UTL to IPC‐1P -- 5.3 ADOR Strategy for Developing New Zeolite Structures -- 5.3.1 Assembly -- 5.3.2 Disassembly -- 5.3.3 Organization -- 5.3.4 Reassembly -- 5.3.5 Liquid‐phase ADOR -- 5.3.5.1 The UTL Case -- 5.3.5.2 The CIT‐13 Case -- 5.3.5.3 The UOV Case -- 5.3.5.4 The IWW Case -- 5.3.6 Vapor‐phase ADOR -- 5.3.7 Reductive Degermanation -- 5.3.8 Solid‐state Transformations -- 5.4 Structure Stabilization -- 5.4.1 Degermanation -- 5.4.2 Functionalization With Catalytic Sites.
5.4.3 Slow Disassembly -- 5.4.4 Reverse ADOR -- 5.5 Germanosilicate‐Derived Catalysts -- 5.5.1 Summary and Perspectives -- Acknowledgements -- References -- Chapter 6 Heteroatom‐Containing Dendritic Mesoporous Silica Nanoparticles -- 6.1 Introduction -- 6.2 Main Synthetic Methods and Formation Mechanism of Pure Silica‐Based Dendritic Mesoporous Silica Nanoparticles (DMSNs) -- 6.2.1 Main Synthetic Methods of Dendritic Mesoporous Silica Nanoparticles (DMSNs) -- 6.2.2 Unified Formation Mechanism of Dendritic Mesoporous Silica Nanoparticles -- 6.3 Synthesis of Heteroatom‐Containing DMSNs and Their Catalytic Applications -- 6.3.1 One‐Pot Doping Strategy for DMSNs Containing Heteroatoms (Al/Ti/V/Sn/Mn/Fe/Co) -- 6.3.2 Post‐grafting for Surface Metal Complexes -- 6.3.3 Loading of Metal and/or Metal Oxide Nanoparticles Within the Nanopores -- 6.4 Summary and Perspectives -- Acknowledgments -- References -- Chapter 7 Chemical Post‐Modifications of Titanosilicates -- 7.1 Introduction -- 7.2 Diffusion and Adsorption/Desorption -- 7.2.1 Hierarchical Titanosilicates -- 7.2.2 Surface Hydrophilicity and Hydrophobicity -- 7.3 Surface Reaction -- 7.3.1 Ti Active Sites Content -- 7.3.2 Ti Active Sites Distribution -- 7.3.3 Ti Active Sites Properties -- 7.3.3.1 Electrophilicity of Ti Active Sites -- 7.3.3.2 Coordinate State of Ti Active Sites -- 7.3.3.3 Adjacent Silanol Groups of Ti Active Sites -- 7.4 Solvent Effect -- 7.4.1 Effect of Solvent on Diffusion -- 7.4.2 Effect of Solvent on Adsorption/Desorption -- 7.4.3 Effect of Solvent on Surface Reactions -- 7.4.3.1 Effect on the Formation on Ti O O H -- 7.4.3.2 Effect on the Stability of Ti O O H -- 7.4.3.3 Effect on the Transfer of Ti O O H -- 7.5 Conclusions and Prospects -- References -- Chapter 8 Spectroscopic Characterization of Heteroatom‐Containing Zeolites -- 8.1 X‐Ray Technique.
8.1.1 XRD Determination of Framework Structure and Heteroatoms in Zeolites -- 8.1.2 XAS Characterization of Metals in Zeolite -- 8.1.3 XPS Analysis of the Chemical State of Metal Species -- 8.2 Ultraviolet-Visible‐Near Infrared (UV-VIS-NIR) Spectroscopy -- 8.2.1 UV-VIS-NIR Characterization of Framework and Non‐Framework Metal Species -- 8.2.2 UV-VIS-NIR Characterization of Metal Species on Ion Exchange Sites of Zeolites -- 8.3 Raman Spectroscopy -- 8.3.1 Raman Study of Synthesis Mechanism and Assembly of Metal‐Zeolites -- 8.3.2 Raman Characterization of Active Metal‐Oxygen Species in Zeolites -- 8.4 Solid‐State NMR Spectroscopy -- 8.4.1 Solid‐State NMR Characterization of Metal Elements in Zeolites -- 8.4.2 Solid‐State Correlation NMR Measurement of Active Site Proximity and Host-Guest Interactions -- 8.4.3 In Situ Solid‐State NMR for the Study of Reaction Mechanisms -- 8.5 Conclusions -- Acknowledgments -- References -- Chapter 9 Theoretical Calculations of Heteroatom Substituted Zeolites -- 9.1 Introduction -- 9.2 Ti‐Doped Zeolites -- 9.2.1 Preferred Tetrahedral (T) Sites for Substitution -- 9.2.2 Lewis Acid -- 9.2.3 Active Site with H2O2 -- 9.2.4 Reaction Mechanism -- 9.2.4.1 Epoxidation of Olefins -- 9.2.4.2 Ammoximation and Oxidation of Cyclohexanone -- 9.2.4.3 Oxidation Desulfurization Reactions -- 9.3 Sn‐Doped Zeolites -- 9.3.1 Preferred Substitution T Sites and Acidity -- 9.3.2 Reaction Mechanism -- 9.3.2.1 Glucose Isomerization to Fructose and Epimerization to Mannose -- 9.3.3 Other Catalytic Reactions -- 9.4 Other Metal‐Substituted Zeolites -- 9.5 Summary and Outlook -- Acknowledgments -- References -- Chapter 10 Catalytic Ammoximation of Ketones or Aldehydes Using Titanosilicates -- 10.1 Introduction -- 10.2 The Development of Titanosilicates in Ammoximation of Ketones and Aldehydes.
10.3 Ammoximation Mechanism and Product Distributions of Representative Ketones and Aldehydes -- 10.3.1 Titanosilicate‐Catalyzed Ammoximation Mechanism -- 10.3.2 Product Distributions for Ammoximation of Representative Carbonyl Compounds -- 10.4 Enhancing Ammoximation Performances in Titanosilicate/H2O2 System -- 10.4.1 Improvement of Catalytic Ammoximation Activity -- 10.4.1.1 Regulation of Ti Active Sites -- 10.4.1.2 Enhancement of Diffusion Properties -- 10.4.1.3 Improvement of Hydrophobicity -- 10.4.1.4 Regulation of Acid Sites -- 10.4.2 Improvement of Catalytic Ammoximation Stability -- 10.5 Ketone Ammoximation Technology for Industrial Processes -- 10.6 Titanosilicate‐Based Bifunctional Catalysts for Process Intensified or Tandem Ammoximation Reactions -- 10.7 Conclusions and Perspectives -- Acknowledgments -- References -- Chapter 11 Titanosilicate‐Based Alkene Epoxidation Catalysis -- 11.1 Introduction -- 11.2 Reaction Chemistry of Alkene Epoxidation Catalyzed by Titanosilicate Zeolites -- 11.3 Typical Alkene Epoxidation Cases -- 11.3.1 Propylene Epoxidation for PO Production -- 11.3.2 Propylene Chloride Epoxidation -- 11.3.3 Ethylene Epoxidation to EO, EG, and Ethers -- 11.4 Industrial Propylene Epoxidation Techniques and Processes -- 11.5 Conclusion and Outlook -- Acknowledgments -- References -- Chapter 12 Propylene Epoxidation with Cumene Hydroperoxide/Titanosilicates -- 12.1 Introduction -- 12.2 Traditional Route for PO Production (Chlorohydrin Process) -- 12.3 Co‐production Route for PO Production (PO/TBA and PO/SM Processes) -- 12.4 PO‐Only Production Routes (HPPO and CMHPPO Routes) -- 12.5 Catalyst Design for PO‐Only Routes -- 12.5.1 Mesoporous Ti‐Doped Catalysts for CMHPPO Process -- 12.5.2 Hierarchical Titanosilicates for CMHPPO Process -- 12.6 Industrial CMHPPO Process -- 12.7 Conclusions and Outlooks -- References.
Chapter 13 Hydroxylation of Benzene and Phenol on Zeolite Catalysts.
Record Nr. UNINA-9910842400303321
Wu Peng  
Newark : , : John Wiley & Sons, Incorporated, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
MWW-type titanosilicate : synthesis, structural modification and catalytic applications to green oxidations / / Peng Wu, Hao Xu, Le Xu, Yueming Liu, Mingyuan He
MWW-type titanosilicate : synthesis, structural modification and catalytic applications to green oxidations / / Peng Wu, Hao Xu, Le Xu, Yueming Liu, Mingyuan He
Autore Wu Peng
Edizione [1st ed. 2013.]
Pubbl/distr/stampa Heidelberg [Germany] : , : Springer, , 2013
Descrizione fisica 1 online resource (viii, 125 pages) : illustrations (some color)
Disciplina 541
Collana SpringerBriefs in Green Chemistry for Sustainability
Soggetto topico Silicates
Zeolites
Green chemistry
ISBN 3-642-39115-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction -- Synthesis of Ti-MWW zeolite -- Post-synthesis modification of Ti-MWW: a door to diversity -- Catalytic properties of Ti-MWW in selective oxidation reactions -- Conclusions and Prospects.
Record Nr. UNINA-9910437822103321
Wu Peng  
Heidelberg [Germany] : , : Springer, , 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui