Vai al contenuto principale della pagina

Computational Mathematics Modeling in Cancer Analysis : Third International Workshop, CMMCA 2024, Marrakesh, Morocco, October 6, 2024, Proceedings / / edited by Jia Wu, Wenjian Qin, Chao Li, Boklye Kim



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Wu Jia Visualizza persona
Titolo: Computational Mathematics Modeling in Cancer Analysis : Third International Workshop, CMMCA 2024, Marrakesh, Morocco, October 6, 2024, Proceedings / / edited by Jia Wu, Wenjian Qin, Chao Li, Boklye Kim Visualizza cluster
Pubblicazione: Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2025
Edizione: 1st ed. 2025.
Descrizione fisica: 1 online resource (131 pages)
Disciplina: 006
Soggetto topico: Image processing - Digital techniques
Computer vision
Computer Imaging, Vision, Pattern Recognition and Graphics
Altri autori: QinWenjian  
LiChao  
KimBoklye  
Nota di contenuto: Unified Modeling Enhanced Multimodal Learning for Precision Neuro-Oncolo -- A Reference-based Approach for Tumor Size Estimation in Monocular Laparoscopic Videos -- Follicular Lymphoma Grading Based on 3D-DDcGAN and Bayesian CNN using PET-CT Images -- Multi-channel Multi-model Fusion Module (MMFM) based Circulating Abnormal Cells (CACs) Detection for Lung Cancer early Diagnosis with Fluorescence in Situ Hybridization (FISH) Images -- Domain Game: Disentangle Anatomical Feature for Single Domain Generalized Segmentation -- Attention-fusion Model for Multi-Omics (AMMO) Data Integration in Lung Adenocarcinoma.-PD-L1 Expression Prediction using Scalable Multi Instance Transformer -- Improving Single-Source Domain Generalization via Anatomy-Guided Texture Augmentation for Cervical Tumor Segmentation -- PANDA: Pneumonitis ANomaly Detection using Attention U-Net -- Estimating The Average Treatment Effect using Weighting Methods in Lung Cancer Immunotherapy -- Beyond Conventional Parametric Modeling: Data-Driven Framework for Estimation and Prediction of Time Activity Curves in Dynamic PET Imaging -- Assessment of Radiomics Feature Repeatability and Reproducibility and Their Generalizability Across Image Modalities by Perturbation in Nasopharyngeal Carcinoma Patients.
Sommario/riassunto: This book constitutes the refereed proceedings of Third International Workshop on Computational Mathematics Modeling in Cancer Analysis, CMMCA 2024, held in Marrakesh, Morocco, on October 6, 2024, in conjunction with MICCAI 2024. The 12 full papers presented in this book were carefully reviewed and selected from 14 submissions. CMMCA serves as a platform for collaboration among professionals in mathematics, engineering, computer science, and medicine, focusing on innovative mathematical methods for analyzing complex cancer data.
Titolo autorizzato: Computational Mathematics Modeling in Cancer Analysis  Visualizza cluster
ISBN: 3-031-73360-6
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910983336103321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Lecture Notes in Computer Science, . 1611-3349 ; ; 15181