top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Designing data spaces : the ecosystem approach to competitive advantage / / editors, Boris Otto, Michael Ten Hompel, Stefan Wrobel
Designing data spaces : the ecosystem approach to competitive advantage / / editors, Boris Otto, Michael Ten Hompel, Stefan Wrobel
Autore Otto Boris
Pubbl/distr/stampa Cham, : Springer Nature, 2022
Descrizione fisica 1 online resource (xv, 580 pages) : illustrations (chiefly color)
Altri autori (Persone) OttoBoris
ten HompelMichael
WrobelStefan
Soggetto topico Database management
Information technology
Soggetto non controllato Data Spaces
GAIA-X
Data Lakes
Big Data
Information Retrieval
Information Systems Applications
Data Ecosystems
Data Integration
Data Security
ISBN 3-030-93975-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Foreword -- Preface -- Contents -- Abbreviation -- Part I: Foundations and Context -- Chapter 1: The Evolution of Data Spaces -- 1.1 Data Sharing in Data Ecosystems -- 1.1.1 The Role of Data for Enterprises -- 1.1.2 Data Sharing and Data Sovereignty -- 1.1.3 Example Mobility Data Space -- 1.1.4 Need for Action and Research Goal -- 1.2 Conceptual and Technological Foundations -- 1.2.1 Data Spaces Defined -- 1.2.2 Roles and Responsibilities in Data Spaces -- 1.2.3 GAIA-X and IDS -- 1.3 Evolutionary Stages of Data Space Ecosystems -- 1.4 Designing Data Spaces -- 1.4.1 Ecosystem Perspective -- 1.4.2 Federator Perspective -- 1.5 Summary and Outlook -- References -- Chapter 2: How to Build, Run, and Govern Data Spaces -- 2.1 Data Space Design Principles -- 2.1.1 Entirely New Services for Users Based on Enhanced Transparency and Data Sovereignty -- 2.1.2 Level Playing Field for Data Sharing and Exchange -- 2.1.3 Need for Data Space Interoperability: The Soft Infrastructure -- 2.1.4 Public-Private Governance: Europe Taking the Lead in Establishing the Soft Infrastructure in a Coordinated and Collabora... -- 2.2 Building Blocks for Data Spaces -- 2.2.1 Technical Building Blocks -- 2.2.2 Governance Building Blocks -- 2.3 Synthesis of Building Blocks to Data Spaces -- 2.4 Harmonized Approach to Data Space Governance -- 2.5 The Way Forward and Convergence: Actions to Take in the Coming Digital Decade -- References -- Chapter 3: International Data Spaces in a Nutshell -- 3.1 International Data Spaces -- 3.1.1 Goals of the International Data Spaces -- 3.1.2 Reference Architecture Model -- 3.1.2.1 The International Data Spaces Components -- 3.1.2.2 The International Data Spaces Roles -- 3.1.2.3 Usage Control -- 3.1.3 Certification -- 3.1.3.1 Security Profiles -- 3.1.3.2 Participant Certification -- 3.1.3.3 Component Certification -- 3.1.4 Open Source.
References -- Chapter 4: Role of Gaia-X in the European Data Space Ecosystem -- 4.1 A Quick Introduction to Gaia-X -- 4.2 The Business World with Gaia-X -- 4.2.1 Economy of Data -- 4.2.2 Compliance -- 4.2.3 Measuring Success -- 4.3 The Gaia-X Principles -- 4.3.1 Objectives -- 4.3.2 Policy Rules and Specifications for Infrastructure Application and Data -- 4.3.3 Federated Services in Business Ecosystems -- 4.4 The Gaia-X Data Spaces -- 4.4.1 Finance and Insurance -- 4.4.2 Energy -- 4.4.3 Automotive -- 4.4.4 Health -- 4.4.5 Aeronautics -- 4.4.6 Travel -- 4.5 The National Hub Organization and the Launching of Additional Data Spaces -- 4.6 Conclusion: Data Spaces-The Enabler of Digital in Business -- References -- Chapter 5: Legal Aspects of IDS: Data Sovereignty-What Does It Imply? -- 5.1 Data Sovereignty: Freedom of Contract and Regulation -- 5.1.1 No Ownership or Exclusivity Rights in Data -- 5.1.2 Usage Control: Legally and Technically -- 5.1.3 Database Rights -- 5.1.4 Trade Secrets -- 5.1.5 Competition Law -- 5.1.6 EU Strategy on Data: The Relevance of Data Spaces -- 5.1.7 Data Governance Act: First Comments -- 5.1.8 Personal and Non-personal Data -- 5.1.8.1 GDPR -- 5.1.8.2 Free Flow of Non-Personal Data Regulation -- 5.1.9 Cybersecurity -- 5.1.9.1 NIS Directive -- 5.1.9.2 Cybersecurity Act -- 5.2 Preparing Contractual Ecosystems -- 5.2.1 Platform Contracts -- 5.2.1.1 Key Principles -- 5.2.1.2 Legal TestBed: A Lead Example -- 5.2.2 Data Licensing Agreements -- 5.2.2.1 The Contract Matrix -- 5.2.2.2 The IDS Sample Contracts -- 5.3 Implementing Compliance -- 5.3.1 GDPR -- 5.3.1.1 Controllers, Joint Controllers, and Processors -- 5.3.1.2 Documentation -- 5.3.1.3 Breach Notifications -- 5.3.1.4 Enforcement and Sanctions -- 5.3.2 Competition Law -- 5.4 Certifications from a Legal Perspective -- 5.4.1 Role of Procedural Rules -- 5.4.2 Additional Aspects.
Chapter 6: Tokenomics: Decentralized Incentivization in the Context of Data Spaces -- 6.1 Tokenomics in the Context of Data Spaces -- 6.2 Token-Based Supply Chain Management -- 6.2.1 Supply Chain Traceability -- 6.2.2 Distributed Ledger Technology and Tokenomics -- 6.2.3 DLT-Based Supply Chain Traceability -- 6.3 Tokenomics in the Context of Personal Data Markets -- 6.3.1 Personal Data Markets -- 6.3.2 Motivational Factors for Tokenomics Approach in Personal Data Markets -- 6.3.3 Token Design Principles for Personal Data Markets -- 6.3.4 Derivation of Token Archetypes for PDMs -- 6.4 Conclusions -- References -- Part II: Data Space Technologies -- Chapter 7: The IDS Information Model: A Semantic Vocabulary for Sovereign Data Exchange -- 7.1 Introduction -- 7.2 Evolving Trust in the IDS Toward Self-Sovereign Identity -- 7.3 Definition of Contract Clauses: The IDS Usage Contract Language and Its Core Concepts -- 7.3.1 The Solid Access Control Model vs. IDS Usage Contract Language -- 7.3.2 Usage Control Dimensions -- 7.3.3 Operators for Usage Control Rules -- 7.4 The Policy Information Point -- 7.5 The Participant Information Service (ParIS) -- 7.6 Conclusion: The IDS-IM as the Bridge Between Expressions, Infrastructure, and Enforcement -- References -- Chapter 8: Data Usage Control -- 8.1 Introduction -- 8.2 Usage Control -- 8.2.1 Access Control -- 8.2.2 Usage Control -- 8.2.3 Usage Control Components and Communication Flow -- 8.2.4 Specification, Management, and Negotiation -- 8.2.5 Related Concepts -- 8.2.5.1 Data Leak/Loss Prevention -- 8.2.5.2 Digital Rights Management -- 8.2.5.3 User Managed Access -- 8.2.5.4 Windows Information Protection -- 8.3 Usage Control in the IDS -- 8.3.1 Usage Control Policies -- 8.3.1.1 Policy Classes -- 8.3.1.2 Policy Negotiation -- 8.3.2 Usage Control Technologies -- 8.3.2.1 Integration Concept.
8.3.2.2 MY DATA Control Technologies -- 8.3.3 Logic-Based Usage Control (LUCON) -- 8.3.3.1 Degree (D) -- 8.3.3.2 Data Provenance Tracking -- 8.4 Conclusion -- References -- Chapter 9: Building Trust in Data Spaces -- 9.1 Introduction -- 9.2 Data Sovereignty and Usage Control -- 9.2.1 Data Provider and Data Consumer -- 9.2.2 Protection Goals and Attacker Model -- 9.2.3 Building Blocks -- 9.3 Certification Process -- 9.3.1 Multiple Eye Principle -- 9.3.2 Component Certification -- 9.3.3 Operational Environment Certification -- 9.4 Connector Identities and Software Signing -- 9.4.1 Technical Implementation of the Certification Process -- 9.4.2 Connector Identities and Company Descriptions -- 9.4.3 Software Signing and Manifests -- 9.5 Connector System Security -- 9.5.1 Trusted Computing Base -- 9.5.2 Remote Attestation -- 9.6 Conclusion -- References -- Chapter 10: Blockchain Technology and International Data Spaces -- 10.1 Introduction -- 10.2 Blockchain Technology -- 10.2.1 Basic Concept -- 10.2.2 Design Parameters -- 10.2.3 Smart Contracts -- 10.2.4 Opportunities of Blockchain Systems -- 10.3 Blockchain in International Data Spaces -- 10.4 Application Examples: Industrial Use Cases -- 10.4.1 TrackChain -- 10.4.2 Silke -- 10.4.3 Sinlog -- 10.4.4 BC for Production -- 10.5 Conclusion -- References -- Chapter 11: Federated Data Integration in Data Spaces -- 11.1 Introduction -- 11.2 Federated Data Integration Workflows in Data Spaces -- 11.2.1 A Simple Demonstrator Scenario -- 11.2.2 A Data Integration Workflow Solution for Data Spaces -- 11.3 Toward Formalisms for Virtual Data Space Integration -- 11.3.1 Logical Foundations for Data Integration -- 11.3.2 Data Integration Tool Extensions for Data Spaces -- References -- Chapter 12: Semantic Integration and Interoperability -- 12.1 Introduction -- 12.2 The Neglected Variety Dimension.
12.2.1 From Big Data to Cognitive Data -- 12.3 Representing Knowledge in Semantic Graphs -- 12.3.1 Representing Data Semantically -- 12.4 RDF a Holistic Data Representation for Schema, Data, and Metadata -- 12.5 Establishing Interoperability by Linking and Mapping between Different Data and Knowledge Representations -- 12.6 Exemplary Data Integration in Supply Chains with ScorVoc -- 12.7 Conclusions -- References -- Chapter 13: Data Ecosystems: A New Dimension of Value Creation Using AI and Machine Learning -- 13.1 Introduction -- 13.2 Big Data, Machine Learning, and Artificial Intelligence -- 13.3 An Open Platform for Developing AI Applications -- 13.4 Machine Learning at the Edge -- 13.5 Machine Learning in Digital Ecosystems -- 13.6 Trustworthy AI Solutions -- 13.7 Summary -- References -- Chapter 14: IDS as a Foundation for Open Data Ecosystems -- 14.1 Introduction -- 14.2 Barriers of Open Data -- 14.3 Related Work -- 14.4 International Data Spaces and Open Data -- 14.4.1 IDS as an Open Data Technology -- 14.4.2 IDS Components in an Open Data Environment -- 14.4.3 Benefits -- 14.5 The Public Data Space -- 14.5.1 The Open Data Connector -- 14.5.2 The Open Data Broker -- 14.5.3 Use Case: Publishing Open Government Data -- 14.6 Discussion and Conclusion -- References -- Chapter 15: Defining Platform Research Infrastructure as a Service (PRIaaS) for Future Scientific Data Infrastructure -- 15.1 Introduction -- 15.2 European Research Area -- 15.2.1 European Research Infrastructures and ESFRI Roadmap -- 15.2.2 European Open Science Cloud (EOSC) -- 15.3 Technology-Driven Science Transformation -- 15.3.1 Science Digitalization and Industry 4.0 -- 15.3.2 Transformational Role of Artificial Intelligence -- 15.3.3 Promises of 5G Technologies -- 15.3.4 Adopting Platform and Ecosystems Business Model for Future SDI.
15.3.5 Other Infrastructure Technologies and Trends.
Record Nr. UNISA-996483157003316
Otto Boris  
Cham, : Springer Nature, 2022
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Designing Data Spaces : The Ecosystem Approach to Competitive Advantage / / edited by Boris Otto, Michael ten Hompel, Stefan Wrobel
Designing Data Spaces : The Ecosystem Approach to Competitive Advantage / / edited by Boris Otto, Michael ten Hompel, Stefan Wrobel
Autore Otto Boris
Edizione [1st ed. 2022.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022
Descrizione fisica 1 online resource (xv, 580 pages) : illustrations (chiefly color)
Disciplina 005.3
Altri autori (Persone) OttoBoris
ten HompelMichael
WrobelStefan
Collana Computer Science Series
Soggetto topico Application software
Big data
Expert systems (Computer science)
Information storage and retrieval systems
Computer and Information Systems Applications
Big Data
Knowledge Based Systems
Information Storage and Retrieval
ISBN 9783030939755
3030939758
Classificazione COM018000COM021000COM025000COM030000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Part I: Foundations and Context -- 1. The Evolution of Data Spaces -- 2. How to Build, Run, and Govern Data Spaces -- 3. International Data Spaces in a Nutshell -- 4. Role of Gaia-X in the European Data Space Ecosystem -- 5. Legal Aspects of IDS: Data Sovereignty—What Does It Imply? -- 6. Tokenomics: Decentralized Incentivization in the Context of Data Spaces -- Part II: Data Space Technologies -- 7. The IDS Information Model: A Semantic Vocabulary for Sovereign Data Exchange -- 8. Data Usage Control -- 9. Building Trust in Data Spaces -- 10. Blockchain Technology and International Data Spaces -- 11. Federated Data Integration in Data Spaces -- 12. Semantic Integration and Interoperability -- 13. Data Ecosystems: A New Dimension of Value Creation Using AI and Machine Learning -- 14. IDS as a Foundation for Open Data Ecosystems -- 15. Defining Platform Research Infrastructure as a Service (PRIaaS) for Future Scientific Data Infrastructure -- Part III: Use Cases and Data Ecosystems -- 16. Silicon Economy:Logistics as the Natural Data Ecosystem -- 17. Agricultural Data Space -- 18. Medical Data Spaces in Healthcare Data Ecosystems -- 19. Industrial Data Spaces -- 20. Energy Data Space -- 21. Mobility Data Space -- Part IV: Solutions and Applications -- 22. Data Sharing Spaces: The BDVA Perspective -- 23. Data Platform Solutions -- 24. FIWARE for Data Spaces -- 25. Sovereign Cloud Technologies for Scalable Data Spaces -- 26. Data Space Based on Mass Customization Model -- 27. Huawei and International Data Spaces -- International Collaboration Between Data Spaces and Carrier Networks -- 29. From Linear Supply Chains to Open Supply Ecosystems -- 30. Data Spaces: First Applications in Mobility and Industry -- 31. Competition, Security, and Transparency: Data in Connected Vehicles -- Data Space Functionality -- The Energy Data Space: The Path to a European Approach for Energy.
Record Nr. UNINA-9910585784403321
Otto Boris  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Machine Learning: ECML-95 [[electronic resource] ] : 8th European Conference on Machine Learning, Heraclion, Crete, Greece, April 25 - 27, 1995. Proceedings / / edited by Nada Lavrač, Stefan Wrobel
Machine Learning: ECML-95 [[electronic resource] ] : 8th European Conference on Machine Learning, Heraclion, Crete, Greece, April 25 - 27, 1995. Proceedings / / edited by Nada Lavrač, Stefan Wrobel
Edizione [1st ed. 1995.]
Pubbl/distr/stampa Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 1995
Descrizione fisica 1 online resource (XII, 376 p.)
Disciplina 006.3/1
Collana Lecture Notes in Artificial Intelligence
Soggetto topico Artificial intelligence
Algorithms
Artificial Intelligence
Algorithm Analysis and Problem Complexity
ISBN 3-540-49232-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Reasoning and learning in probabilistic and possibilistic networks: An overview -- Problem decomposition and the learning of skills -- Machine learning in the world wide web -- Abstract computer models: Towards a new method for theorizing about adaptive agents -- Learning abstract planning cases -- The role of prototypicality in exemplar-based learning -- Specialization of recursive predicates -- A distributed genetic algorithm improving the generalization behavior of neural networks -- Learning non-monotonic logic programs: Learning exceptions -- A comparative utility analysis of case-based reasoning and control-rule learning systems -- A minimization approach to propositional inductive learning -- On concept space and hypothesis space in case-based learning algorithms -- The power of decision tables -- Pruning multivariate decision trees by hyperplane merging -- Multiple-Knowledge Representations in concept learning -- The effect of numeric features on the scalability of inductive learning programs -- Analogical logic program synthesis from examples -- A guided tour through hypothesis spaces in ILP -- JIGSAW: Puzzling together RUTH and SPECTRE (Extended abstract) -- Discovery of constraints and data dependencies in relational databases (Extended abstract) -- Learning disjunctive normal forms in a dual classifier system (Extended abstract) -- The effects of noise on efficient incremental induction (Extended abstract) -- Analysis of Rachmaninoff's piano performances using inductive logic programming (Extended abstract) -- Handling real numbers in ILP: A step towards better behavioural clones (Extended abstract) -- Simplifying decision trees by pruning and grafting: New results (Extended abstract) -- A tight integration of pruning and learning (Extended abstract) -- Decision-tree based neural network (Extended abstract) -- Learning recursion with iterative bootstrap induction (Extended abstract) -- Patching proofs for reuse (Extended abstract) -- Adapting to drift in continuous domains (Extended abstract) -- Parallel recombinative reinforcement learning (Extended abstract) -- Learning to solve complex tasks for reactive systems (Extended abstract) -- Co-operative Reinforcement Learning by payoff filters (Extended abstract) -- Automatic synthesis of control programs by combination of learning and problem solving methods (Extended abstract) -- Analytical learning guided by empirical technology: An approach to integration (Extended abstract) -- A new MDL measure for robust rule induction (Extended abstract) -- Class-driven statistical discretization of continuous attributes (Extended abstract) -- Generating neural networks through the induction of threshold logic unit trees (Extended abstract) -- Learning classification rules using lattices (Extended abstract) -- Hybrid classification: Using axis-parallel and oblique subdivisions of the attribute space (Extended abstract) -- An induction-based control for genetic algorithms (Extended abstract) -- Fender: An approach to theory restructuring (extended abstract) -- Language series revisited: The complexity of hypothesis spaces in ILP (Extended abstract) -- Prototype, nearest neighbor and hybrid algorithms for time series classification (Extended abstract).
Record Nr. UNISA-996466104703316
Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 1995
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Proceedings, twenty-second International Conference on Machine Learning
Proceedings, twenty-second International Conference on Machine Learning
Autore Dzeroski Saso
Pubbl/distr/stampa [Place of publication not identified], : ACM, 2005
Descrizione fisica 1 online resource (1113 pages)
Collana ACM Other conferences
Soggetto topico Engineering & Applied Sciences
Computer Science
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti Proceedings of the 22nd International Conference on Machine Learning
ICML '05
Record Nr. UNINA-9910375922403321
Dzeroski Saso  
[Place of publication not identified], : ACM, 2005
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Visual Analytics for Data Scientists [[electronic resource] /] / by Natalia Andrienko, Gennady Andrienko, Georg Fuchs, Aidan Slingsby, Cagatay Turkay, Stefan Wrobel
Visual Analytics for Data Scientists [[electronic resource] /] / by Natalia Andrienko, Gennady Andrienko, Georg Fuchs, Aidan Slingsby, Cagatay Turkay, Stefan Wrobel
Autore Andrienko Natalia
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (450 pages)
Disciplina 001.4226
Soggetto topico Data mining
Artificial intelligence
Pattern recognition
Data Mining and Knowledge Discovery
Artificial Intelligence
Pattern Recognition
ISBN 3-030-56146-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Part I: Introduction to Visual Analytics in Data Science -- 1. Introduction to Visual Analytics by an Example -- 2. General Concepts -- 3. Principles of Interactive Visualisation -- 4. Computational Techniques in Visual Analytics -- Part II: Visual Analytics along the Data Science Workflow -- 5. Visual Analytics for Investigating and Processing Data -- 6. Visual Analytics for Understanding Multiple Attributes -- 7. Visual Analytics for Understanding Relationships between Entities -- 8. Visual Analytics for Understanding Temporal Distributions and Variations -- 9. Visual Analytics for Understanding Spatial Distributions and Spatial Variation -- 10. Visual Analytics for Understanding Phenomena in Space and Time -- 11. Visual Analytics for Understanding Texts -- 12. Visual Analytics for Understanding Images and Video -- 13. Computational Modelling with Visual Analytics -- 14. Conclusion.
Record Nr. UNISA-996418270303316
Andrienko Natalia  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Visual Analytics for Data Scientists / / by Natalia Andrienko, Gennady Andrienko, Georg Fuchs, Aidan Slingsby, Cagatay Turkay, Stefan Wrobel
Visual Analytics for Data Scientists / / by Natalia Andrienko, Gennady Andrienko, Georg Fuchs, Aidan Slingsby, Cagatay Turkay, Stefan Wrobel
Autore Andrienko Natalia
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (450 pages)
Disciplina 001.4226
Soggetto topico Data mining
Artificial intelligence
Pattern perception
Data Mining and Knowledge Discovery
Artificial Intelligence
Pattern Recognition
ISBN 3-030-56146-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Part I: Introduction to Visual Analytics in Data Science -- 1. Introduction to Visual Analytics by an Example -- 2. General Concepts -- 3. Principles of Interactive Visualisation -- 4. Computational Techniques in Visual Analytics -- Part II: Visual Analytics along the Data Science Workflow -- 5. Visual Analytics for Investigating and Processing Data -- 6. Visual Analytics for Understanding Multiple Attributes -- 7. Visual Analytics for Understanding Relationships between Entities -- 8. Visual Analytics for Understanding Temporal Distributions and Variations -- 9. Visual Analytics for Understanding Spatial Distributions and Spatial Variation -- 10. Visual Analytics for Understanding Phenomena in Space and Time -- 11. Visual Analytics for Understanding Texts -- 12. Visual Analytics for Understanding Images and Video -- 13. Computational Modelling with Visual Analytics -- 14. Conclusion.
Record Nr. UNINA-9910483123703321
Andrienko Natalia  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Visual analytics of movement / / Gennady Andrienko [and four others]
Visual analytics of movement / / Gennady Andrienko [and four others]
Autore Andrienko Gennady
Edizione [1st ed. 2013.]
Pubbl/distr/stampa Heidelberg [Germany] : , : Springer, , 2013
Descrizione fisica 1 online resource (xviii, 387 pages) : illustrations (some color)
Disciplina 006.31
Collana Gale eBooks
Soggetto topico Visual analytics
Information visualization
Data mining
Pattern perception
ISBN 3-642-37583-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction -- Conceptual framework -- Transformations of movement data -- Visual analytics infrastructure -- Visual analytics focusing on movers -- Visual analytics focusing on spatial events -- Visual analytics focusing on space -- Visual analytics focusing on time -- Discussion and outlook.
Record Nr. UNINA-9910739460903321
Andrienko Gennady  
Heidelberg [Germany] : , : Springer, , 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui