top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Genetic Programming Theory and Practice XIV / / edited by Rick Riolo, Bill Worzel, Brian Goldman, Bill Tozier
Genetic Programming Theory and Practice XIV / / edited by Rick Riolo, Bill Worzel, Brian Goldman, Bill Tozier
Edizione [1st ed. 2018.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
Descrizione fisica 1 online resource (233 pages)
Disciplina 006.31
Collana Genetic and Evolutionary Computation
Soggetto topico Artificial intelligence
Computational intelligence
Algorithms
Artificial Intelligence
Computational Intelligence
Algorithm Analysis and Problem Complexity
ISBN 3-319-97088-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1 Similarity-based Analysis of Population Dynamics in Genetic Programming Performing Symbolic Regression -- 2 An Investigation of Hybrid Structural and Behavioral Diversity Methods in Genetic Programming -- 3 Investigating Multi-Population Competitive Coevolution for Anticipation of Tax Evasion -- 4 Evolving Artificial General Intelligence for Video Game Controllers -- 5 A Detailed Analysis of a PushGP Run -- 6 Linear Genomes for Structured Programs -- 7 Neutrality, Robustness, and Evolvability in Genetic Programming -- 8 Local Search is Underused in Genetic Programming -- 9 PRETSL: Distributed Probabilistic Rule Evolution for Time-Series Classification -- 10 Discovering Relational Structural in Program Synthesis Problems with Analogical Reasoning -- 11 An Evolutionary Algorithm for Big Data Multi-Class Classification Problems -- 12 A Genetic Framework for Building Dispersion Operators in the Semantic Space -- 13 Assisting Asset Model Development with Evolutionary Augmentation -- 14 Identifying and Harnessing the Building Blocks of Machine Learning Pipelines for Sensible Initialization of a Data Science Automation Tool.
Record Nr. UNINA-9910299163003321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Genetic Programming Theory and Practice XVII [[electronic resource] /] / edited by Wolfgang Banzhaf, Erik Goodman, Leigh Sheneman, Leonardo Trujillo, Bill Worzel
Genetic Programming Theory and Practice XVII [[electronic resource] /] / edited by Wolfgang Banzhaf, Erik Goodman, Leigh Sheneman, Leonardo Trujillo, Bill Worzel
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (XXVI, 409 p. 142 illus., 112 illus. in color.)
Disciplina 006.31
Collana Genetic and Evolutionary Computation
Soggetto topico Artificial intelligence
Computational intelligence
Algorithms
Artificial Intelligence
Computational Intelligence
Algorithm Analysis and Problem Complexity
ISBN 3-030-39958-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1. Characterizing the Effects of Random Subsampling on Lexicase Selection -- 2. It is Time for New Perspectives on How to Fight Bloatin GP -- 3. Explorations of the Semantic Learning Machine Neuroevolution Algorithm -- 4. Can Genetic Programming Perform Explainable Machine Learning for Bioinformatics? -- 5. Symbolic Regression by Exhaustive Search – Reducing the Search Space using Syntactical Constraints and Efficient Semantic Structure Deduplication -- 6. Temporal Memory Sharing in Visual Reinforcement Learning -- 7. The Evolution of Representations in Genetic Programming Trees -- 8. How Competitive is Genetic Programming in Business Data Science Applications? -- 9. Using Modularity Metrics as Design Features to Guide Evolution in Genetic Programming -- 10. Evolutionary Computation and AI Safety -- 11. Genetic Programming Symbolic Regression -- 12. Hands-on Artificial Evolution through Brain Programming -- 13. Comparison of Linear Genome Representations For Software Synthesis -- 14. Enhanced Optimization with Composite Objectives and Novelty Pulsation -- 15. New Pathways in Coevolutionary Computation -- 16. 2019 Evolutionary Algorithms Review -- 17. Evolving a Dota 2 Hero Bot with a Probabilistic Shared Memory Model -- 18. Modelling Genetic Programming as a Simple Sampling Algorithm -- 19. An Evolutionary System for Better Automatic Software Repair -- Index.
Record Nr. UNISA-996465456403316
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Genetic Programming Theory and Practice XVII / / edited by Wolfgang Banzhaf, Erik Goodman, Leigh Sheneman, Leonardo Trujillo, Bill Worzel
Genetic Programming Theory and Practice XVII / / edited by Wolfgang Banzhaf, Erik Goodman, Leigh Sheneman, Leonardo Trujillo, Bill Worzel
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (XXVI, 409 p. 142 illus., 112 illus. in color.)
Disciplina 006.31
Collana Genetic and Evolutionary Computation
Soggetto topico Artificial intelligence
Computational intelligence
Algorithms
Artificial Intelligence
Computational Intelligence
Algorithm Analysis and Problem Complexity
ISBN 3-030-39958-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1. Characterizing the Effects of Random Subsampling on Lexicase Selection -- 2. It is Time for New Perspectives on How to Fight Bloatin GP -- 3. Explorations of the Semantic Learning Machine Neuroevolution Algorithm -- 4. Can Genetic Programming Perform Explainable Machine Learning for Bioinformatics? -- 5. Symbolic Regression by Exhaustive Search – Reducing the Search Space using Syntactical Constraints and Efficient Semantic Structure Deduplication -- 6. Temporal Memory Sharing in Visual Reinforcement Learning -- 7. The Evolution of Representations in Genetic Programming Trees -- 8. How Competitive is Genetic Programming in Business Data Science Applications? -- 9. Using Modularity Metrics as Design Features to Guide Evolution in Genetic Programming -- 10. Evolutionary Computation and AI Safety -- 11. Genetic Programming Symbolic Regression -- 12. Hands-on Artificial Evolution through Brain Programming -- 13. Comparison of Linear Genome Representations For Software Synthesis -- 14. Enhanced Optimization with Composite Objectives and Novelty Pulsation -- 15. New Pathways in Coevolutionary Computation -- 16. 2019 Evolutionary Algorithms Review -- 17. Evolving a Dota 2 Hero Bot with a Probabilistic Shared Memory Model -- 18. Modelling Genetic Programming as a Simple Sampling Algorithm -- 19. An Evolutionary System for Better Automatic Software Repair -- Index.
Record Nr. UNINA-9910409670203321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui