Estimating the flammable mass of a vapor cloud [[electronic resource] /] / John L. Woodward |
Autore | Woodward John Lowell |
Pubbl/distr/stampa | New York, : Center for Chemical Process Safety of the American Institute of Chemical Engineers, c1998 |
Descrizione fisica | 1 online resource (326 p.) |
Disciplina |
660.2804
660/.2804 |
Collana | CCPS concept book |
Soggetto topico |
Vapors - Flammability - Mathematical models
Explosions - Mathematical models Fire - Mathematical models Chemical plants - Safety measures Flammable gases |
Soggetto genere / forma | Electronic books. |
ISBN |
1-282-84929-8
9786612849299 0-470-93536-7 1-59124-559-1 0-470-93535-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Estimating the Flammable Mass of a Vapor Cloud; CONTENTS; Preface; Acknowledgments; Glossary; Nomenclature; 1 INTRODUCTION; 1.1. Why Calculate Flammable Mass?; 1.2. How Are Flammable Mass Estimates Used?; 1.3. Other CCPS Publications; 2 OVERVIEW; 2.1. Context; 2.2. Objectives; 1.3. How to Use This Book; 3 INDUSTRY EXPERIENCES WITH FLAMMABLE VAPOR CLOUDS; 3.1. Property Losses from Vapor Cloud Accidents; 3.2. Examples of Vapor Cloud Events; 3.2.1. Bangkok, Thailand, LPG Vapor Cloud; 3.2.2. Saint Herblain, France, Gasoline Cloud, October 7,1991
3.2.3. Pampa, Texas, Hoechst-Celanese Explosion, November 17,19873.2.4. Monsanto Ethanol Explosion, Autumn, 1970; 3.2.5. Mexico City Vapor Cloud and Explosion, November 19,1984; 3.2.6. Pasadena, Texas Fire and Explosion, October 23,1989; 3.3. Examples with Postaccident Determination of Flammable Mass; 3.3.1. Flixborough Vapor Cloud Explosion, June 1,1974; 3.3.2. Piper Alpha North Sea Platform Fire, July 6,1988; 3.3.3. DSM Naphtha Cracker, Beek, the Netherlands, 7 November 1975; 4 BASIC CONCEPTS-FLUID FLOW, FIRES, AND EXPLOSIONS; 4.1. Discharge Characteristics 4.1.1. Single-Phase Discharge Rates from Tanks4.1.2. Single-Phase Discharge Rates from Pipes; 4.1.3. Two-Phase Discharge Rates from Tanks; 4.1.4. Two-Phase Discharge Rates from Pipes; 4.1.5. Aerosol Formation and Drop Size Correlations; 4.1.6. Rainout; 4.1.7. Pool Spread and Evaporation on Land; 4.2. Dispersion Factors; 4.2.1. Jet Mixing; 4.2.2. Meteorology; 4.2.3. Surface Roughness and Terrain; 4.2.4. Averaging Time; 4.2.5. Impingement and Cratering; 4.2.6. Obstacle Effects; 4.3. Sources of Ignition; 4.4. Flame Characteristics; 4.4.1. Flammable Limits; 4.4.2. Flammable Limits with Inerts 4.4.3. Autoignition Temperature for Gases4.4.4. Minimum Ignition Energy for Gases; 4.4.5. Flash Point; 4.4.6. Laminar Burning Velocity and Turbulent Flame Speed; 4.5. Aerosol Flammability; 4.6. Turbulence Effects; 4.6.1. Turbulence Effects of Jet Plume Ignition; 4.6.2. Turbulence and Pockets of Flammable Material; 4.7. Flash Fires; 4.8. Explosions; 4.8.1. Confinement and Congestion; 4.8.2. Effect of Concentration on Explosion Overpressure; 4.8.3. TNT Equivalence Explosion Models; 4.8.4. Volume Source Explosion Models; 4.8.5. Determining Fuel Reactivity 4.8.6. Determining Degree of Confinement4.8.7. Determining Level of Congestion; 4.8.8. Multiple Congested Volumes; 4.9. Minimum Flammable Mass for Vapor Cloud Explosions; 4.10. Probability of Vapor Cloud Ignition and Explosion; 5 DETERMINATION OF FLAMMABLE MASS; 5.1. Estimation Methods by Degree of Confinement; 5.2. Methods for Finding the Flammable Mass in Unconfined Vapor Clouds; 5.2.1. Screening: Rules of Thumb; 5.2.2. Calculating Flammable Mass with Dispersion Models; 5.3. Methods for Finding the Flammable Mass in Partially Confined Vapor Clouds 5.3.1. Estimating Flammable Mass for Potential Explosion Sites |
Record Nr. | UNINA-9910142522303321 |
Woodward John Lowell | ||
New York, : Center for Chemical Process Safety of the American Institute of Chemical Engineers, c1998 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Estimating the flammable mass of a vapor cloud [[electronic resource] /] / John L. Woodward |
Autore | Woodward John Lowell |
Pubbl/distr/stampa | New York, : Center for Chemical Process Safety of the American Institute of Chemical Engineers, c1998 |
Descrizione fisica | 1 online resource (326 p.) |
Disciplina |
660.2804
660/.2804 |
Collana | CCPS concept book |
Soggetto topico |
Vapors - Flammability - Mathematical models
Explosions - Mathematical models Fire - Mathematical models Chemical plants - Safety measures Flammable gases |
ISBN |
1-282-84929-8
9786612849299 0-470-93536-7 1-59124-559-1 0-470-93535-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Estimating the Flammable Mass of a Vapor Cloud; CONTENTS; Preface; Acknowledgments; Glossary; Nomenclature; 1 INTRODUCTION; 1.1. Why Calculate Flammable Mass?; 1.2. How Are Flammable Mass Estimates Used?; 1.3. Other CCPS Publications; 2 OVERVIEW; 2.1. Context; 2.2. Objectives; 1.3. How to Use This Book; 3 INDUSTRY EXPERIENCES WITH FLAMMABLE VAPOR CLOUDS; 3.1. Property Losses from Vapor Cloud Accidents; 3.2. Examples of Vapor Cloud Events; 3.2.1. Bangkok, Thailand, LPG Vapor Cloud; 3.2.2. Saint Herblain, France, Gasoline Cloud, October 7,1991
3.2.3. Pampa, Texas, Hoechst-Celanese Explosion, November 17,19873.2.4. Monsanto Ethanol Explosion, Autumn, 1970; 3.2.5. Mexico City Vapor Cloud and Explosion, November 19,1984; 3.2.6. Pasadena, Texas Fire and Explosion, October 23,1989; 3.3. Examples with Postaccident Determination of Flammable Mass; 3.3.1. Flixborough Vapor Cloud Explosion, June 1,1974; 3.3.2. Piper Alpha North Sea Platform Fire, July 6,1988; 3.3.3. DSM Naphtha Cracker, Beek, the Netherlands, 7 November 1975; 4 BASIC CONCEPTS-FLUID FLOW, FIRES, AND EXPLOSIONS; 4.1. Discharge Characteristics 4.1.1. Single-Phase Discharge Rates from Tanks4.1.2. Single-Phase Discharge Rates from Pipes; 4.1.3. Two-Phase Discharge Rates from Tanks; 4.1.4. Two-Phase Discharge Rates from Pipes; 4.1.5. Aerosol Formation and Drop Size Correlations; 4.1.6. Rainout; 4.1.7. Pool Spread and Evaporation on Land; 4.2. Dispersion Factors; 4.2.1. Jet Mixing; 4.2.2. Meteorology; 4.2.3. Surface Roughness and Terrain; 4.2.4. Averaging Time; 4.2.5. Impingement and Cratering; 4.2.6. Obstacle Effects; 4.3. Sources of Ignition; 4.4. Flame Characteristics; 4.4.1. Flammable Limits; 4.4.2. Flammable Limits with Inerts 4.4.3. Autoignition Temperature for Gases4.4.4. Minimum Ignition Energy for Gases; 4.4.5. Flash Point; 4.4.6. Laminar Burning Velocity and Turbulent Flame Speed; 4.5. Aerosol Flammability; 4.6. Turbulence Effects; 4.6.1. Turbulence Effects of Jet Plume Ignition; 4.6.2. Turbulence and Pockets of Flammable Material; 4.7. Flash Fires; 4.8. Explosions; 4.8.1. Confinement and Congestion; 4.8.2. Effect of Concentration on Explosion Overpressure; 4.8.3. TNT Equivalence Explosion Models; 4.8.4. Volume Source Explosion Models; 4.8.5. Determining Fuel Reactivity 4.8.6. Determining Degree of Confinement4.8.7. Determining Level of Congestion; 4.8.8. Multiple Congested Volumes; 4.9. Minimum Flammable Mass for Vapor Cloud Explosions; 4.10. Probability of Vapor Cloud Ignition and Explosion; 5 DETERMINATION OF FLAMMABLE MASS; 5.1. Estimation Methods by Degree of Confinement; 5.2. Methods for Finding the Flammable Mass in Unconfined Vapor Clouds; 5.2.1. Screening: Rules of Thumb; 5.2.2. Calculating Flammable Mass with Dispersion Models; 5.3. Methods for Finding the Flammable Mass in Partially Confined Vapor Clouds 5.3.1. Estimating Flammable Mass for Potential Explosion Sites |
Record Nr. | UNISA-996199267403316 |
Woodward John Lowell | ||
New York, : Center for Chemical Process Safety of the American Institute of Chemical Engineers, c1998 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Estimating the flammable mass of a vapor cloud [[electronic resource] /] / John L. Woodward |
Autore | Woodward John Lowell |
Pubbl/distr/stampa | New York, : Center for Chemical Process Safety of the American Institute of Chemical Engineers, c1998 |
Descrizione fisica | 1 online resource (326 p.) |
Disciplina |
660.2804
660/.2804 |
Collana | CCPS concept book |
Soggetto topico |
Vapors - Flammability - Mathematical models
Explosions - Mathematical models Fire - Mathematical models Chemical plants - Safety measures Flammable gases |
ISBN |
1-282-84929-8
9786612849299 0-470-93536-7 1-59124-559-1 0-470-93535-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Estimating the Flammable Mass of a Vapor Cloud; CONTENTS; Preface; Acknowledgments; Glossary; Nomenclature; 1 INTRODUCTION; 1.1. Why Calculate Flammable Mass?; 1.2. How Are Flammable Mass Estimates Used?; 1.3. Other CCPS Publications; 2 OVERVIEW; 2.1. Context; 2.2. Objectives; 1.3. How to Use This Book; 3 INDUSTRY EXPERIENCES WITH FLAMMABLE VAPOR CLOUDS; 3.1. Property Losses from Vapor Cloud Accidents; 3.2. Examples of Vapor Cloud Events; 3.2.1. Bangkok, Thailand, LPG Vapor Cloud; 3.2.2. Saint Herblain, France, Gasoline Cloud, October 7,1991
3.2.3. Pampa, Texas, Hoechst-Celanese Explosion, November 17,19873.2.4. Monsanto Ethanol Explosion, Autumn, 1970; 3.2.5. Mexico City Vapor Cloud and Explosion, November 19,1984; 3.2.6. Pasadena, Texas Fire and Explosion, October 23,1989; 3.3. Examples with Postaccident Determination of Flammable Mass; 3.3.1. Flixborough Vapor Cloud Explosion, June 1,1974; 3.3.2. Piper Alpha North Sea Platform Fire, July 6,1988; 3.3.3. DSM Naphtha Cracker, Beek, the Netherlands, 7 November 1975; 4 BASIC CONCEPTS-FLUID FLOW, FIRES, AND EXPLOSIONS; 4.1. Discharge Characteristics 4.1.1. Single-Phase Discharge Rates from Tanks4.1.2. Single-Phase Discharge Rates from Pipes; 4.1.3. Two-Phase Discharge Rates from Tanks; 4.1.4. Two-Phase Discharge Rates from Pipes; 4.1.5. Aerosol Formation and Drop Size Correlations; 4.1.6. Rainout; 4.1.7. Pool Spread and Evaporation on Land; 4.2. Dispersion Factors; 4.2.1. Jet Mixing; 4.2.2. Meteorology; 4.2.3. Surface Roughness and Terrain; 4.2.4. Averaging Time; 4.2.5. Impingement and Cratering; 4.2.6. Obstacle Effects; 4.3. Sources of Ignition; 4.4. Flame Characteristics; 4.4.1. Flammable Limits; 4.4.2. Flammable Limits with Inerts 4.4.3. Autoignition Temperature for Gases4.4.4. Minimum Ignition Energy for Gases; 4.4.5. Flash Point; 4.4.6. Laminar Burning Velocity and Turbulent Flame Speed; 4.5. Aerosol Flammability; 4.6. Turbulence Effects; 4.6.1. Turbulence Effects of Jet Plume Ignition; 4.6.2. Turbulence and Pockets of Flammable Material; 4.7. Flash Fires; 4.8. Explosions; 4.8.1. Confinement and Congestion; 4.8.2. Effect of Concentration on Explosion Overpressure; 4.8.3. TNT Equivalence Explosion Models; 4.8.4. Volume Source Explosion Models; 4.8.5. Determining Fuel Reactivity 4.8.6. Determining Degree of Confinement4.8.7. Determining Level of Congestion; 4.8.8. Multiple Congested Volumes; 4.9. Minimum Flammable Mass for Vapor Cloud Explosions; 4.10. Probability of Vapor Cloud Ignition and Explosion; 5 DETERMINATION OF FLAMMABLE MASS; 5.1. Estimation Methods by Degree of Confinement; 5.2. Methods for Finding the Flammable Mass in Unconfined Vapor Clouds; 5.2.1. Screening: Rules of Thumb; 5.2.2. Calculating Flammable Mass with Dispersion Models; 5.3. Methods for Finding the Flammable Mass in Partially Confined Vapor Clouds 5.3.1. Estimating Flammable Mass for Potential Explosion Sites |
Record Nr. | UNINA-9910829839303321 |
Woodward John Lowell | ||
New York, : Center for Chemical Process Safety of the American Institute of Chemical Engineers, c1998 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Estimating the flammable mass of a vapor cloud / / John L. Woodward |
Autore | Woodward John Lowell |
Pubbl/distr/stampa | New York, : Center for Chemical Process Safety of the American Institute of Chemical Engineers, c1998 |
Descrizione fisica | 1 online resource (326 p.) |
Disciplina | 660/.2804 |
Collana | CCPS concept book |
Soggetto topico |
Vapors - Flammability - Mathematical models
Explosions - Mathematical models Fire - Mathematical models Chemical plants - Safety measures Flammable gases |
ISBN |
1-282-84929-8
9786612849299 0-470-93536-7 1-59124-559-1 0-470-93535-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Estimating the Flammable Mass of a Vapor Cloud; CONTENTS; Preface; Acknowledgments; Glossary; Nomenclature; 1 INTRODUCTION; 1.1. Why Calculate Flammable Mass?; 1.2. How Are Flammable Mass Estimates Used?; 1.3. Other CCPS Publications; 2 OVERVIEW; 2.1. Context; 2.2. Objectives; 1.3. How to Use This Book; 3 INDUSTRY EXPERIENCES WITH FLAMMABLE VAPOR CLOUDS; 3.1. Property Losses from Vapor Cloud Accidents; 3.2. Examples of Vapor Cloud Events; 3.2.1. Bangkok, Thailand, LPG Vapor Cloud; 3.2.2. Saint Herblain, France, Gasoline Cloud, October 7,1991
3.2.3. Pampa, Texas, Hoechst-Celanese Explosion, November 17,19873.2.4. Monsanto Ethanol Explosion, Autumn, 1970; 3.2.5. Mexico City Vapor Cloud and Explosion, November 19,1984; 3.2.6. Pasadena, Texas Fire and Explosion, October 23,1989; 3.3. Examples with Postaccident Determination of Flammable Mass; 3.3.1. Flixborough Vapor Cloud Explosion, June 1,1974; 3.3.2. Piper Alpha North Sea Platform Fire, July 6,1988; 3.3.3. DSM Naphtha Cracker, Beek, the Netherlands, 7 November 1975; 4 BASIC CONCEPTS-FLUID FLOW, FIRES, AND EXPLOSIONS; 4.1. Discharge Characteristics 4.1.1. Single-Phase Discharge Rates from Tanks4.1.2. Single-Phase Discharge Rates from Pipes; 4.1.3. Two-Phase Discharge Rates from Tanks; 4.1.4. Two-Phase Discharge Rates from Pipes; 4.1.5. Aerosol Formation and Drop Size Correlations; 4.1.6. Rainout; 4.1.7. Pool Spread and Evaporation on Land; 4.2. Dispersion Factors; 4.2.1. Jet Mixing; 4.2.2. Meteorology; 4.2.3. Surface Roughness and Terrain; 4.2.4. Averaging Time; 4.2.5. Impingement and Cratering; 4.2.6. Obstacle Effects; 4.3. Sources of Ignition; 4.4. Flame Characteristics; 4.4.1. Flammable Limits; 4.4.2. Flammable Limits with Inerts 4.4.3. Autoignition Temperature for Gases4.4.4. Minimum Ignition Energy for Gases; 4.4.5. Flash Point; 4.4.6. Laminar Burning Velocity and Turbulent Flame Speed; 4.5. Aerosol Flammability; 4.6. Turbulence Effects; 4.6.1. Turbulence Effects of Jet Plume Ignition; 4.6.2. Turbulence and Pockets of Flammable Material; 4.7. Flash Fires; 4.8. Explosions; 4.8.1. Confinement and Congestion; 4.8.2. Effect of Concentration on Explosion Overpressure; 4.8.3. TNT Equivalence Explosion Models; 4.8.4. Volume Source Explosion Models; 4.8.5. Determining Fuel Reactivity 4.8.6. Determining Degree of Confinement4.8.7. Determining Level of Congestion; 4.8.8. Multiple Congested Volumes; 4.9. Minimum Flammable Mass for Vapor Cloud Explosions; 4.10. Probability of Vapor Cloud Ignition and Explosion; 5 DETERMINATION OF FLAMMABLE MASS; 5.1. Estimation Methods by Degree of Confinement; 5.2. Methods for Finding the Flammable Mass in Unconfined Vapor Clouds; 5.2.1. Screening: Rules of Thumb; 5.2.2. Calculating Flammable Mass with Dispersion Models; 5.3. Methods for Finding the Flammable Mass in Partially Confined Vapor Clouds 5.3.1. Estimating Flammable Mass for Potential Explosion Sites |
Record Nr. | UNINA-9910876662603321 |
Woodward John Lowell | ||
New York, : Center for Chemical Process Safety of the American Institute of Chemical Engineers, c1998 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
LNG risk based safety [[electronic resource] ] : modeling and consequence analysis / / John L Woodward and Robin Pitblado |
Autore | Woodward John Lowell |
Pubbl/distr/stampa | Hoboken, N.J., : Wiley, c2010 |
Descrizione fisica | 1 online resource (392 p.) |
Disciplina |
665.7/730289
665.7730289 |
Altri autori (Persone) | PitbladoRobin |
Soggetto topico |
Liquefied natural gas - Safety measures
Flammable gases - Accidents - Risk assessment Flammable liquids - Accidents - Risk assessment Chemicals - Fires and fire prevention Chemical plants - Accidents - Simulation methods |
Soggetto genere / forma | Electronic books. |
ISBN |
1-282-54984-7
9786612549847 0-470-59023-8 0-470-59022-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
LNG RISK BASED SAFETY; CONTENTS; Preface; 1 LNG Properties and Overview of Hazards; 1.1 LNG Properties; 1.2 Hazards of LNG with Respect to Public Risk; 1.2.1 Flash Fire, Pool Fire, or Jet Fire; 1.2.2 Outdoor Vapor Cloud Explosions; 1.2.3 Enclosed Vapor Cloud Explosions; 1.2.4 Asphyxiation; 1.2.5 Freeze Burns; 1.2.6 RPT Explosions; 1.2.7 Roll Over; 1.3 Risk Analysis Requires Adequate Modeling; 1.4 Flammability; 1.5 Regulations in Siting Onshore LNG Import Terminals; 1.5.1 U.S. Marine LNG Risk and Security Regulation; 1.5.2 U.S. Land-Based LNG Risk and Security Regulation
1.5.3 European and International Regulations1.6 Regulation for Siting Offshore LNG Import Terminals; 1.7 Controversial Claims of LNG Opponents; 2 LNG Incidents and Marine History; 2.1 LNG Ship Design History; 2.1.1 Initial Design Attempts; 2.1.2 Tank Materials; 2.1.3 Insulation Materials; 2.1.4 Tank Design; 2.2 Designs and Issues-First Commercial LNG Ships; 2.2.1 Membrane Technology; 2.2.2 Gaztransport Solution; 2.2.3 Spheres; 2.2.4 LNG Carriers for the Asian Trade; 2.2.5 Current State of LNG Tankers; 2.3 LNG Trade History; 2.3.1 European Trade; 2.3.2 Asian Trade; 2.3.3 Temporary Setbacks 2.3.4 Revival of LNG with Worldwide Supply-Demand Pinch of Petroleum2.3.5 Supply History; 2.3.6 Some Economic Factors; 2.4 LNG Accident History; 2.5 Summary of LNG History and Relevant Technical Developments; 3 Current LNG Carriers; 3.1 Design Requirements; 3.2 Membrane Tanks; 3.2.1 Tank Design and Insulation; 3.2.2 Dimensions and Capacity; 3.2.3 Tank Materials and Insulation; 3.2.4 Pressure and Vacuum Relief; 3.2.5 Design Issues; 3.3 Moss Spheres; 3.3.1 Typical Dimensions and Capacity; 3.3.2 Insulation and Tank Materials; 3.3.3 Pressure and Vacuum Relief; 3.3.4 Design Issues 4 Risk Analysis and Risk Reduction4.1 Background; 4.2 Risk Analysis Process; 4.2.1 Hazard Identification; 4.3 Frequency: Data Sources and Analysis; 4.3.1 Generic Data Approach; 4.4 Frequency: Predictive Methods; 4.4.1 FTA; 4.4.2 Event Tree Analysis; 4.5 Consequence Modeling; 4.6 Ignition Probability; 4.7 Risk Results; 4.7.1 Risk Presentation; 4.7.2 Risk Decision Making; 4.8 Special Issues-Terrorism; 4.9 Risk Reduction and Mitigation Measures for LNG; 5 LNG Discharge on Water; 5.1 Type 1-Above Water Breaches at Sea; 5.1.1 Ship-to-Ship Collisions; 5.1.2 Weapons Attack 5.2 Type 2-At Waterline Breaches at Sea5.2.1 Grounding or Collision; 5.2.2 Explosive-Laden Boat Attack; 5.3 Type 3-Below Waterline Breaches at Sea; 5.4 Discharges from Ship's Pipework; 5.5 Cascading Failures at Sea; 5.5.1 Sloshing Forces; 5.5.2 Explosion in Hull Chambers; 5.5.3 RPT in Hull Chambers; 5.5.4 Cryogenic Temperature Stresses on Decks and Hull; 5.5.5 Cascading Events Caused by Fire; 5.6 Initial Discharge Rate; 5.7 Time-Dependent Discharge (Blowdown); 5.7.1 Blowdown for Type 2 Breach (at Waterline); 5.7.2 Blowdown for Type 1 Breach (above Waterline) 5.7.3 Blowdown of Type 3 Breach (Underwater Level) |
Record Nr. | UNINA-9910140606103321 |
Woodward John Lowell | ||
Hoboken, N.J., : Wiley, c2010 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
LNG risk based safety [[electronic resource] ] : modeling and consequence analysis / / John L Woodward and Robin Pitblado |
Autore | Woodward John Lowell |
Pubbl/distr/stampa | Hoboken, N.J., : Wiley, c2010 |
Descrizione fisica | 1 online resource (392 p.) |
Disciplina |
665.7/730289
665.7730289 |
Altri autori (Persone) | PitbladoRobin |
Soggetto topico |
Liquefied natural gas - Safety measures
Flammable gases - Accidents - Risk assessment Flammable liquids - Accidents - Risk assessment Chemicals - Fires and fire prevention Chemical plants - Accidents - Simulation methods |
ISBN |
1-282-54984-7
9786612549847 0-470-59023-8 0-470-59022-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
LNG RISK BASED SAFETY; CONTENTS; Preface; 1 LNG Properties and Overview of Hazards; 1.1 LNG Properties; 1.2 Hazards of LNG with Respect to Public Risk; 1.2.1 Flash Fire, Pool Fire, or Jet Fire; 1.2.2 Outdoor Vapor Cloud Explosions; 1.2.3 Enclosed Vapor Cloud Explosions; 1.2.4 Asphyxiation; 1.2.5 Freeze Burns; 1.2.6 RPT Explosions; 1.2.7 Roll Over; 1.3 Risk Analysis Requires Adequate Modeling; 1.4 Flammability; 1.5 Regulations in Siting Onshore LNG Import Terminals; 1.5.1 U.S. Marine LNG Risk and Security Regulation; 1.5.2 U.S. Land-Based LNG Risk and Security Regulation
1.5.3 European and International Regulations1.6 Regulation for Siting Offshore LNG Import Terminals; 1.7 Controversial Claims of LNG Opponents; 2 LNG Incidents and Marine History; 2.1 LNG Ship Design History; 2.1.1 Initial Design Attempts; 2.1.2 Tank Materials; 2.1.3 Insulation Materials; 2.1.4 Tank Design; 2.2 Designs and Issues-First Commercial LNG Ships; 2.2.1 Membrane Technology; 2.2.2 Gaztransport Solution; 2.2.3 Spheres; 2.2.4 LNG Carriers for the Asian Trade; 2.2.5 Current State of LNG Tankers; 2.3 LNG Trade History; 2.3.1 European Trade; 2.3.2 Asian Trade; 2.3.3 Temporary Setbacks 2.3.4 Revival of LNG with Worldwide Supply-Demand Pinch of Petroleum2.3.5 Supply History; 2.3.6 Some Economic Factors; 2.4 LNG Accident History; 2.5 Summary of LNG History and Relevant Technical Developments; 3 Current LNG Carriers; 3.1 Design Requirements; 3.2 Membrane Tanks; 3.2.1 Tank Design and Insulation; 3.2.2 Dimensions and Capacity; 3.2.3 Tank Materials and Insulation; 3.2.4 Pressure and Vacuum Relief; 3.2.5 Design Issues; 3.3 Moss Spheres; 3.3.1 Typical Dimensions and Capacity; 3.3.2 Insulation and Tank Materials; 3.3.3 Pressure and Vacuum Relief; 3.3.4 Design Issues 4 Risk Analysis and Risk Reduction4.1 Background; 4.2 Risk Analysis Process; 4.2.1 Hazard Identification; 4.3 Frequency: Data Sources and Analysis; 4.3.1 Generic Data Approach; 4.4 Frequency: Predictive Methods; 4.4.1 FTA; 4.4.2 Event Tree Analysis; 4.5 Consequence Modeling; 4.6 Ignition Probability; 4.7 Risk Results; 4.7.1 Risk Presentation; 4.7.2 Risk Decision Making; 4.8 Special Issues-Terrorism; 4.9 Risk Reduction and Mitigation Measures for LNG; 5 LNG Discharge on Water; 5.1 Type 1-Above Water Breaches at Sea; 5.1.1 Ship-to-Ship Collisions; 5.1.2 Weapons Attack 5.2 Type 2-At Waterline Breaches at Sea5.2.1 Grounding or Collision; 5.2.2 Explosive-Laden Boat Attack; 5.3 Type 3-Below Waterline Breaches at Sea; 5.4 Discharges from Ship's Pipework; 5.5 Cascading Failures at Sea; 5.5.1 Sloshing Forces; 5.5.2 Explosion in Hull Chambers; 5.5.3 RPT in Hull Chambers; 5.5.4 Cryogenic Temperature Stresses on Decks and Hull; 5.5.5 Cascading Events Caused by Fire; 5.6 Initial Discharge Rate; 5.7 Time-Dependent Discharge (Blowdown); 5.7.1 Blowdown for Type 2 Breach (at Waterline); 5.7.2 Blowdown for Type 1 Breach (above Waterline) 5.7.3 Blowdown of Type 3 Breach (Underwater Level) |
Record Nr. | UNINA-9910830217303321 |
Woodward John Lowell | ||
Hoboken, N.J., : Wiley, c2010 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
LNG risk based safety : modeling and consequence analysis / / John L Woodward and Robin Pitblado |
Autore | Woodward John Lowell |
Pubbl/distr/stampa | Hoboken, N.J., : Wiley, c2010 |
Descrizione fisica | 1 online resource (392 p.) |
Disciplina | 665.7/730289 |
Altri autori (Persone) | PitbladoRobin |
Soggetto topico |
Liquefied natural gas - Safety measures
Flammable gases - Accidents - Risk assessment Flammable liquids - Accidents - Risk assessment Chemicals - Fires and fire prevention Chemical plants - Accidents - Simulation methods |
ISBN |
1-282-54984-7
9786612549847 0-470-59023-8 0-470-59022-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
LNG RISK BASED SAFETY; CONTENTS; Preface; 1 LNG Properties and Overview of Hazards; 1.1 LNG Properties; 1.2 Hazards of LNG with Respect to Public Risk; 1.2.1 Flash Fire, Pool Fire, or Jet Fire; 1.2.2 Outdoor Vapor Cloud Explosions; 1.2.3 Enclosed Vapor Cloud Explosions; 1.2.4 Asphyxiation; 1.2.5 Freeze Burns; 1.2.6 RPT Explosions; 1.2.7 Roll Over; 1.3 Risk Analysis Requires Adequate Modeling; 1.4 Flammability; 1.5 Regulations in Siting Onshore LNG Import Terminals; 1.5.1 U.S. Marine LNG Risk and Security Regulation; 1.5.2 U.S. Land-Based LNG Risk and Security Regulation
1.5.3 European and International Regulations1.6 Regulation for Siting Offshore LNG Import Terminals; 1.7 Controversial Claims of LNG Opponents; 2 LNG Incidents and Marine History; 2.1 LNG Ship Design History; 2.1.1 Initial Design Attempts; 2.1.2 Tank Materials; 2.1.3 Insulation Materials; 2.1.4 Tank Design; 2.2 Designs and Issues-First Commercial LNG Ships; 2.2.1 Membrane Technology; 2.2.2 Gaztransport Solution; 2.2.3 Spheres; 2.2.4 LNG Carriers for the Asian Trade; 2.2.5 Current State of LNG Tankers; 2.3 LNG Trade History; 2.3.1 European Trade; 2.3.2 Asian Trade; 2.3.3 Temporary Setbacks 2.3.4 Revival of LNG with Worldwide Supply-Demand Pinch of Petroleum2.3.5 Supply History; 2.3.6 Some Economic Factors; 2.4 LNG Accident History; 2.5 Summary of LNG History and Relevant Technical Developments; 3 Current LNG Carriers; 3.1 Design Requirements; 3.2 Membrane Tanks; 3.2.1 Tank Design and Insulation; 3.2.2 Dimensions and Capacity; 3.2.3 Tank Materials and Insulation; 3.2.4 Pressure and Vacuum Relief; 3.2.5 Design Issues; 3.3 Moss Spheres; 3.3.1 Typical Dimensions and Capacity; 3.3.2 Insulation and Tank Materials; 3.3.3 Pressure and Vacuum Relief; 3.3.4 Design Issues 4 Risk Analysis and Risk Reduction4.1 Background; 4.2 Risk Analysis Process; 4.2.1 Hazard Identification; 4.3 Frequency: Data Sources and Analysis; 4.3.1 Generic Data Approach; 4.4 Frequency: Predictive Methods; 4.4.1 FTA; 4.4.2 Event Tree Analysis; 4.5 Consequence Modeling; 4.6 Ignition Probability; 4.7 Risk Results; 4.7.1 Risk Presentation; 4.7.2 Risk Decision Making; 4.8 Special Issues-Terrorism; 4.9 Risk Reduction and Mitigation Measures for LNG; 5 LNG Discharge on Water; 5.1 Type 1-Above Water Breaches at Sea; 5.1.1 Ship-to-Ship Collisions; 5.1.2 Weapons Attack 5.2 Type 2-At Waterline Breaches at Sea5.2.1 Grounding or Collision; 5.2.2 Explosive-Laden Boat Attack; 5.3 Type 3-Below Waterline Breaches at Sea; 5.4 Discharges from Ship's Pipework; 5.5 Cascading Failures at Sea; 5.5.1 Sloshing Forces; 5.5.2 Explosion in Hull Chambers; 5.5.3 RPT in Hull Chambers; 5.5.4 Cryogenic Temperature Stresses on Decks and Hull; 5.5.5 Cascading Events Caused by Fire; 5.6 Initial Discharge Rate; 5.7 Time-Dependent Discharge (Blowdown); 5.7.1 Blowdown for Type 2 Breach (at Waterline); 5.7.2 Blowdown for Type 1 Breach (above Waterline) 5.7.3 Blowdown of Type 3 Breach (Underwater Level) |
Record Nr. | UNINA-9910876948703321 |
Woodward John Lowell | ||
Hoboken, N.J., : Wiley, c2010 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|