Statistical approach to quantum field theory : an introduction / / Andreas Wipf
| Statistical approach to quantum field theory : an introduction / / Andreas Wipf |
| Autore | Wipf Andreas |
| Edizione | [Second edition.] |
| Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2021] |
| Descrizione fisica | 1 online resource (568 pages) |
| Disciplina | 530.143 |
| Collana | Lecture Notes in Physics |
| Soggetto topico | Quantum field theory |
| ISBN | 3-030-83263-5 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Preface to the Second Edition -- Preface to the First Edition -- Acknowledgments -- Contents -- About the Author -- Acronyms -- 1 Introduction -- References -- 2 Path Integrals in Quantum and Statistical Mechanics -- 2.1 Summing Over All Paths -- 2.2 Recalling Quantum Mechanics -- 2.3 Feynman-Kac Formula -- 2.4 Euclidean Path Integral -- 2.4.1 Quantum Mechanics in Imaginary Time -- 2.4.2 Imaginary Time Path Integral -- 2.5 Path Integral in Quantum Statistics -- 2.5.1 Thermal Correlation Functions -- 2.6 The Harmonic Oscillator -- 2.7 Problems -- References -- 3 High-Dimensional Integrals -- 3.1 Numerical Algorithms -- 3.1.1 Newton-Cotes Integration Method -- 3.2 Monte Carlo Integration -- 3.2.1 Hit-or-Miss Monte Carlo Method and Binomial Distribution -- 3.2.2 Sum of Random Numbers and Gaussian Distribution -- 3.3 Importance Sampling -- 3.4 Some Basic Facts in Probability Theory -- 3.5 Programs for This Chapter -- 3.6 Problems -- References -- 4 Monte Carlo Simulations in Quantum Mechanics -- 4.1 Markov Chains -- 4.1.1 Fixed Points of Markov Chains -- 4.2 Detailed Balance -- 4.2.1 Acceptance Rate -- 4.2.2 Metropolis-Hastings Algorithm -- 4.2.3 Heat Bath Algorithm -- 4.3 The Anharmonic Oscillator -- 4.3.1 Simulating the Anharmonic Oscillator -- 4.4 Hybrid Monte Carlo Algorithm -- 4.4.1 Implementing the HMC Algorithm -- 4.4.2 HMC Algorithm for Harmonic Oscillator -- 4.5 Programs for Chap.4 -- 4.6 Problems -- References -- 5 Scalar Fields at Zero and Finite Temperature -- 5.1 Quantization -- 5.2 Scalar Field Theory at Finite Temperature -- 5.2.1 Free Scalar Field -- 5.3 Schwinger Function and Effective Potential -- 5.3.1 The Legendre-Fenchel Transformation -- 5.4 Scalar Field on a Spacetime Lattice -- 5.5 Random Walk Representation of Green Function -- 5.6 There Is No Leibniz Rule on the Lattice -- 5.7 Problems -- References.
6 Classical Spin Models: An Introduction -- 6.1 Simple Spin Models for (Anti)Ferromagnets -- 6.1.1 Ising Model -- 6.2 Ising-Type Spin Systems -- 6.2.1 Standard Potts Models -- 6.2.2 The Zq Model (Planar Potts Model and Clock Model) -- 6.2.3 The U(1) Model -- 6.2.4 Non-linear O(N) Models -- 6.2.5 Interacting Continuous Spins -- 6.3 Spin Systems in Thermal Equilibrium -- 6.4 Variational Principles -- 6.4.1 Gibbs State and Free Energy -- 6.4.2 Fixed Average Field -- 6.5 Programs for Chap.6 -- 6.6 Problems -- References -- 7 Mean Field Approximation -- 7.1 Approximation for General Lattice Models -- 7.2 The Ising Model -- 7.2.1 An Alternative Derivation -- 7.3 Critical Exponents α,β,γ,δ -- 7.3.1 Susceptibility -- 7.3.2 Magnetization as a Function of Temperature -- 7.3.3 Specific Heat -- 7.3.4 Magnetization as a Function of the Magnetic Field -- 7.3.5 Comparison with Exact and Numerical Results -- 7.4 Mean Field Approximation for Standard Potts Models -- 7.5 Mean Field Approximation for Zq Models -- 7.6 Landau Theory and Ornstein-Zernike Extension -- 7.6.1 Critical Exponents in Landau Theory -- 7.6.2 Two-Point Correlation Function -- 7.7 Anti-ferromagnetic Systems -- 7.8 Mean Field Approximation for Lattice Field Theories -- 7.8.1 ϕ4 and ϕ6 Scalar Theories -- 7.8.2 Non-linear O(N) Models -- 7.9 Program for Chap.7 -- 7.10 Problems -- References -- 8 Transfer Matrices, Correlation Inequalities, and Roots of Partition Functions -- 8.1 Transfer-Matrix Method for the Ising Chain -- 8.1.1 Transfer Matrix -- 8.1.2 The ``Hamiltonian'' -- 8.1.3 The Anti-Ferromagnetic Chain -- 8.2 Potts Chain -- 8.3 Perron-Frobenius Theorem -- 8.4 The General Transfer-Matrix Method -- 8.5 Continuous Target Spaces -- 8.5.1 Euclidean Quantum Mechanics -- 8.5.2 Real Scalar Field -- 8.6 Correlation Inequalities -- 8.7 Roots of the Partition Function. 8.7.1 Lee-Yang Zeroes of Ising Chain -- 8.7.2 General Ferromagnetic Systems -- 8.8 Problems -- References -- 9 High-Temperature and Low-Temperature Expansions -- 9.1 Ising Chain -- 9.1.1 Low Temperature -- 9.1.2 High Temperature -- 9.2 High-Temperature Expansions for Ising Models -- 9.2.1 General Results and Two-Dimensional Model -- Correlation Functions -- Susceptibility -- Extrapolation to the Critical Point -- 9.2.2 Three-Dimensional Model -- Free Energy Density and Specific Heat -- Susceptibility -- 9.3 Low-Temperature Expansion of Ising Models -- 9.3.1 Free Energy and Magnetization of Two-Dimensional Model -- Extrapolation to the Critical Point -- 9.3.2 Three-Dimensional Model -- 9.3.3 Improved Series Studies for Ising-Type Models -- 9.4 High-Temperature Expansions of Nonlinear O(N) Models -- 9.4.1 Expansions of Partition Function and Free Energy -- 9.5 Polymers and Self-Avoiding Walks -- 9.6 Problems -- References -- 10 Peierls Argument and Duality Transformations -- 10.1 Peierls Argument -- 10.1.1 Extension to Higher Dimensions -- 10.2 Duality Transformation of Two-Dimensional Ising Model -- 10.2.1 An Algebraic Derivation -- 10.2.2 Two-Point Function -- 10.2.3 Potts Models -- 10.2.4 Curl and Divergence on a Lattice -- 10.3 Duality Transformation of Three-Dimensional Ising Model -- 10.3.1 Local Gauge Transformations -- 10.4 Duality Transformation of Three-Dimensional Zn Gauge Model -- 10.4.1 Wilson Loops -- 10.4.2 Duality Transformation of U(1) Gauge Model -- 10.5 Duality Transformation of Four-Dimensional Zn Gauge Model -- 10.6 Problems -- References -- 11 Renormalization Group on the Lattice -- 11.1 Decimation of Spins -- 11.1.1 Ising Chain -- 11.1.2 The Two-Dimensional Ising Model -- 11.2 Fixed Points -- 11.2.1 The Vicinity of a Fixed Point -- 11.2.2 Derivation of Scaling Laws -- 11.3 Block-Spin Transformation. 11.4 Continuum Limit of Noninteracting Scalar Fields -- 11.4.1 Correlation Length for Interacting Systems -- 11.5 Continuum Limit of Spin Models -- 11.6 Programs for Chap.11 -- 11.7 Problems -- References -- 12 Functional Renormalization Group -- 12.1 Scale-Dependent Functionals -- 12.2 Derivation of the Flow Equation -- 12.3 Functional Renormalization Applied to Quantum Mechanics -- 12.3.1 Projection onto Polynomials of Order 12 -- 12.3.2 Changing the Regulator Function -- 12.3.3 Solving the Flow Equation for Non-convex Potentials -- 12.4 Scalar Field Theory -- 12.4.1 Fixed Points -- 12.4.2 Critical Exponents -- 12.5 Linear O(N) Models -- 12.5.1 Large N Limit -- 12.5.2 Exact Solution of the Flow Equation -- 12.6 Wave Function Renormalization -- 12.6.1 RG Equation for Wave Function Renormalization -- 12.7 Outlook -- 12.8 Programs for Chap.12 -- 12.9 Problems -- Appendix: A Momentum Integral -- References -- 13 Lattice Gauge Theories -- 13.1 Continuum Gauge Theories -- 13.1.1 Parallel Transport -- 13.2 Gauge-Invariant Formulation of Lattice Higgs Models -- 13.2.1 Wilson Action of Pure Gauge Theories -- 13.2.2 Strong- and Weak-Coupling Limits of Higgs Models -- 13.3 Mean Field Approximation -- 13.3.1 Z2 Gauge Model -- 13.3.2 U(1) Gauge Theory -- 13.3.3 SU(n) Gauge Theories -- 13.3.4 Higgs Model -- 13.4 Expected Phase Diagrams at Zero Temperature -- 13.5 Elitzur's Theorem -- 13.5.1 Proof for Pure Z2 Gauge Theory -- 13.5.2 General Argument -- 13.6 Observables in Pure Gauge Theories -- 13.6.1 String Tension -- 13.6.2 Strong-Coupling Expansion for Pure Gauge Theories -- 13.6.3 Glueballs -- 13.7 Gauge Theories at Finite Temperature -- 13.7.1 Center Symmetry -- 13.7.2 G2 Gauge Theory -- 13.8 Problems -- References -- 14 Two-Dimensional Lattice Gauge Theories and Group Integrals -- 14.1 Abelian Gauge Theories on the Torus -- 14.1.1 Z2 Gauge Theory. 14.1.2 U(1) Gauge Theory -- 14.2 Non-Abelian Lattice Gauge Theories on the Torus -- 14.2.1 Partition Function -- 14.2.2 Casimir Scaling of Polyakov Loops -- 14.3 Invariant Measure and Irreducible Representations -- 14.3.1 The Peter-Weyl Theorem -- 14.4 Problems -- References -- 15 Fermions on a Lattice -- 15.1 Dirac Equation -- 15.1.1 Coupling to Gauge Fields -- 15.2 Grassmann Variables -- 15.2.1 Gaussian Integrals -- 15.2.2 Path Integral for Dirac Theory -- 15.3 Fermion Fields on a Lattice -- 15.3.1 Lattice Derivative -- 15.3.2 Naive Fermions on the Lattice -- 15.3.3 Wilson Fermions -- 15.3.4 Staggered Fermions -- 15.3.5 Nielsen-Ninomiya Theorem -- 15.4 Ginsparg-Wilson Relation and Overlap Fermions -- 15.4.1 Overlap Fermions -- 15.4.2 Locality -- 15.5 Yukawa Models on the Lattice -- 15.5.1 Higgs Sector of Standard Model -- 15.5.2 Supersymmetric Yukawa Models -- 15.6 Coupling to Lattice Gauge Fields -- 15.7 Finite Temperature and Density -- 15.8 Problems -- Appendix: The SLAC Derivative -- References -- 16 Finite Temperature Schwinger Model -- 16.1 The Massless Schwinger Model -- 16.2 Effective Action: Anomaly-Induced Local Part -- 16.3 Effective Actions: Global Part -- 16.3.1 Topologically Trivial Sector -- 16.3.2 Topologically Non-trivial Sectors -- 16.4 Computing the Zero Modes -- 16.5 Chiral Condensate at Finite T and L -- 16.6 Wilson Loops, Field Strength, and 2-Point Function -- 16.6.1 Correlation Functions of the Field Strength -- 16.6.2 Wilson Loops and Charge Screening -- 16.6.3 Polyakov Loops (Thermal Wilson Loops) -- 16.6.4 Gauge-Invariant Fermionic Two-Point Functions -- 16.7 Massive Multi-Flavor Schwinger Model on the Lattice -- 16.7.1 Lattice Simulations -- 16.8 Problems -- References -- 17 Interacting Fermions -- 17.1 Symmetries of Fermi Systems -- 17.2 Four-Fermi Theories -- 17.2.1 Thirring Model -- 17.2.2 (Chiral) Gross-Neveu Model. 17.2.3 Nambu-Jona-Lasinio Model. |
| Record Nr. | UNINA-9910506391203321 |
Wipf Andreas
|
||
| Cham, Switzerland : , : Springer, , [2021] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Statistical approach to quantum field theory : an introduction / / Andreas Wipf
| Statistical approach to quantum field theory : an introduction / / Andreas Wipf |
| Autore | Wipf Andreas |
| Edizione | [Second edition.] |
| Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2021] |
| Descrizione fisica | 1 online resource (568 pages) |
| Disciplina | 530.143 |
| Collana | Lecture Notes in Physics |
| Soggetto topico | Quantum field theory |
| ISBN | 3-030-83263-5 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Preface to the Second Edition -- Preface to the First Edition -- Acknowledgments -- Contents -- About the Author -- Acronyms -- 1 Introduction -- References -- 2 Path Integrals in Quantum and Statistical Mechanics -- 2.1 Summing Over All Paths -- 2.2 Recalling Quantum Mechanics -- 2.3 Feynman-Kac Formula -- 2.4 Euclidean Path Integral -- 2.4.1 Quantum Mechanics in Imaginary Time -- 2.4.2 Imaginary Time Path Integral -- 2.5 Path Integral in Quantum Statistics -- 2.5.1 Thermal Correlation Functions -- 2.6 The Harmonic Oscillator -- 2.7 Problems -- References -- 3 High-Dimensional Integrals -- 3.1 Numerical Algorithms -- 3.1.1 Newton-Cotes Integration Method -- 3.2 Monte Carlo Integration -- 3.2.1 Hit-or-Miss Monte Carlo Method and Binomial Distribution -- 3.2.2 Sum of Random Numbers and Gaussian Distribution -- 3.3 Importance Sampling -- 3.4 Some Basic Facts in Probability Theory -- 3.5 Programs for This Chapter -- 3.6 Problems -- References -- 4 Monte Carlo Simulations in Quantum Mechanics -- 4.1 Markov Chains -- 4.1.1 Fixed Points of Markov Chains -- 4.2 Detailed Balance -- 4.2.1 Acceptance Rate -- 4.2.2 Metropolis-Hastings Algorithm -- 4.2.3 Heat Bath Algorithm -- 4.3 The Anharmonic Oscillator -- 4.3.1 Simulating the Anharmonic Oscillator -- 4.4 Hybrid Monte Carlo Algorithm -- 4.4.1 Implementing the HMC Algorithm -- 4.4.2 HMC Algorithm for Harmonic Oscillator -- 4.5 Programs for Chap.4 -- 4.6 Problems -- References -- 5 Scalar Fields at Zero and Finite Temperature -- 5.1 Quantization -- 5.2 Scalar Field Theory at Finite Temperature -- 5.2.1 Free Scalar Field -- 5.3 Schwinger Function and Effective Potential -- 5.3.1 The Legendre-Fenchel Transformation -- 5.4 Scalar Field on a Spacetime Lattice -- 5.5 Random Walk Representation of Green Function -- 5.6 There Is No Leibniz Rule on the Lattice -- 5.7 Problems -- References.
6 Classical Spin Models: An Introduction -- 6.1 Simple Spin Models for (Anti)Ferromagnets -- 6.1.1 Ising Model -- 6.2 Ising-Type Spin Systems -- 6.2.1 Standard Potts Models -- 6.2.2 The Zq Model (Planar Potts Model and Clock Model) -- 6.2.3 The U(1) Model -- 6.2.4 Non-linear O(N) Models -- 6.2.5 Interacting Continuous Spins -- 6.3 Spin Systems in Thermal Equilibrium -- 6.4 Variational Principles -- 6.4.1 Gibbs State and Free Energy -- 6.4.2 Fixed Average Field -- 6.5 Programs for Chap.6 -- 6.6 Problems -- References -- 7 Mean Field Approximation -- 7.1 Approximation for General Lattice Models -- 7.2 The Ising Model -- 7.2.1 An Alternative Derivation -- 7.3 Critical Exponents α,β,γ,δ -- 7.3.1 Susceptibility -- 7.3.2 Magnetization as a Function of Temperature -- 7.3.3 Specific Heat -- 7.3.4 Magnetization as a Function of the Magnetic Field -- 7.3.5 Comparison with Exact and Numerical Results -- 7.4 Mean Field Approximation for Standard Potts Models -- 7.5 Mean Field Approximation for Zq Models -- 7.6 Landau Theory and Ornstein-Zernike Extension -- 7.6.1 Critical Exponents in Landau Theory -- 7.6.2 Two-Point Correlation Function -- 7.7 Anti-ferromagnetic Systems -- 7.8 Mean Field Approximation for Lattice Field Theories -- 7.8.1 ϕ4 and ϕ6 Scalar Theories -- 7.8.2 Non-linear O(N) Models -- 7.9 Program for Chap.7 -- 7.10 Problems -- References -- 8 Transfer Matrices, Correlation Inequalities, and Roots of Partition Functions -- 8.1 Transfer-Matrix Method for the Ising Chain -- 8.1.1 Transfer Matrix -- 8.1.2 The ``Hamiltonian'' -- 8.1.3 The Anti-Ferromagnetic Chain -- 8.2 Potts Chain -- 8.3 Perron-Frobenius Theorem -- 8.4 The General Transfer-Matrix Method -- 8.5 Continuous Target Spaces -- 8.5.1 Euclidean Quantum Mechanics -- 8.5.2 Real Scalar Field -- 8.6 Correlation Inequalities -- 8.7 Roots of the Partition Function. 8.7.1 Lee-Yang Zeroes of Ising Chain -- 8.7.2 General Ferromagnetic Systems -- 8.8 Problems -- References -- 9 High-Temperature and Low-Temperature Expansions -- 9.1 Ising Chain -- 9.1.1 Low Temperature -- 9.1.2 High Temperature -- 9.2 High-Temperature Expansions for Ising Models -- 9.2.1 General Results and Two-Dimensional Model -- Correlation Functions -- Susceptibility -- Extrapolation to the Critical Point -- 9.2.2 Three-Dimensional Model -- Free Energy Density and Specific Heat -- Susceptibility -- 9.3 Low-Temperature Expansion of Ising Models -- 9.3.1 Free Energy and Magnetization of Two-Dimensional Model -- Extrapolation to the Critical Point -- 9.3.2 Three-Dimensional Model -- 9.3.3 Improved Series Studies for Ising-Type Models -- 9.4 High-Temperature Expansions of Nonlinear O(N) Models -- 9.4.1 Expansions of Partition Function and Free Energy -- 9.5 Polymers and Self-Avoiding Walks -- 9.6 Problems -- References -- 10 Peierls Argument and Duality Transformations -- 10.1 Peierls Argument -- 10.1.1 Extension to Higher Dimensions -- 10.2 Duality Transformation of Two-Dimensional Ising Model -- 10.2.1 An Algebraic Derivation -- 10.2.2 Two-Point Function -- 10.2.3 Potts Models -- 10.2.4 Curl and Divergence on a Lattice -- 10.3 Duality Transformation of Three-Dimensional Ising Model -- 10.3.1 Local Gauge Transformations -- 10.4 Duality Transformation of Three-Dimensional Zn Gauge Model -- 10.4.1 Wilson Loops -- 10.4.2 Duality Transformation of U(1) Gauge Model -- 10.5 Duality Transformation of Four-Dimensional Zn Gauge Model -- 10.6 Problems -- References -- 11 Renormalization Group on the Lattice -- 11.1 Decimation of Spins -- 11.1.1 Ising Chain -- 11.1.2 The Two-Dimensional Ising Model -- 11.2 Fixed Points -- 11.2.1 The Vicinity of a Fixed Point -- 11.2.2 Derivation of Scaling Laws -- 11.3 Block-Spin Transformation. 11.4 Continuum Limit of Noninteracting Scalar Fields -- 11.4.1 Correlation Length for Interacting Systems -- 11.5 Continuum Limit of Spin Models -- 11.6 Programs for Chap.11 -- 11.7 Problems -- References -- 12 Functional Renormalization Group -- 12.1 Scale-Dependent Functionals -- 12.2 Derivation of the Flow Equation -- 12.3 Functional Renormalization Applied to Quantum Mechanics -- 12.3.1 Projection onto Polynomials of Order 12 -- 12.3.2 Changing the Regulator Function -- 12.3.3 Solving the Flow Equation for Non-convex Potentials -- 12.4 Scalar Field Theory -- 12.4.1 Fixed Points -- 12.4.2 Critical Exponents -- 12.5 Linear O(N) Models -- 12.5.1 Large N Limit -- 12.5.2 Exact Solution of the Flow Equation -- 12.6 Wave Function Renormalization -- 12.6.1 RG Equation for Wave Function Renormalization -- 12.7 Outlook -- 12.8 Programs for Chap.12 -- 12.9 Problems -- Appendix: A Momentum Integral -- References -- 13 Lattice Gauge Theories -- 13.1 Continuum Gauge Theories -- 13.1.1 Parallel Transport -- 13.2 Gauge-Invariant Formulation of Lattice Higgs Models -- 13.2.1 Wilson Action of Pure Gauge Theories -- 13.2.2 Strong- and Weak-Coupling Limits of Higgs Models -- 13.3 Mean Field Approximation -- 13.3.1 Z2 Gauge Model -- 13.3.2 U(1) Gauge Theory -- 13.3.3 SU(n) Gauge Theories -- 13.3.4 Higgs Model -- 13.4 Expected Phase Diagrams at Zero Temperature -- 13.5 Elitzur's Theorem -- 13.5.1 Proof for Pure Z2 Gauge Theory -- 13.5.2 General Argument -- 13.6 Observables in Pure Gauge Theories -- 13.6.1 String Tension -- 13.6.2 Strong-Coupling Expansion for Pure Gauge Theories -- 13.6.3 Glueballs -- 13.7 Gauge Theories at Finite Temperature -- 13.7.1 Center Symmetry -- 13.7.2 G2 Gauge Theory -- 13.8 Problems -- References -- 14 Two-Dimensional Lattice Gauge Theories and Group Integrals -- 14.1 Abelian Gauge Theories on the Torus -- 14.1.1 Z2 Gauge Theory. 14.1.2 U(1) Gauge Theory -- 14.2 Non-Abelian Lattice Gauge Theories on the Torus -- 14.2.1 Partition Function -- 14.2.2 Casimir Scaling of Polyakov Loops -- 14.3 Invariant Measure and Irreducible Representations -- 14.3.1 The Peter-Weyl Theorem -- 14.4 Problems -- References -- 15 Fermions on a Lattice -- 15.1 Dirac Equation -- 15.1.1 Coupling to Gauge Fields -- 15.2 Grassmann Variables -- 15.2.1 Gaussian Integrals -- 15.2.2 Path Integral for Dirac Theory -- 15.3 Fermion Fields on a Lattice -- 15.3.1 Lattice Derivative -- 15.3.2 Naive Fermions on the Lattice -- 15.3.3 Wilson Fermions -- 15.3.4 Staggered Fermions -- 15.3.5 Nielsen-Ninomiya Theorem -- 15.4 Ginsparg-Wilson Relation and Overlap Fermions -- 15.4.1 Overlap Fermions -- 15.4.2 Locality -- 15.5 Yukawa Models on the Lattice -- 15.5.1 Higgs Sector of Standard Model -- 15.5.2 Supersymmetric Yukawa Models -- 15.6 Coupling to Lattice Gauge Fields -- 15.7 Finite Temperature and Density -- 15.8 Problems -- Appendix: The SLAC Derivative -- References -- 16 Finite Temperature Schwinger Model -- 16.1 The Massless Schwinger Model -- 16.2 Effective Action: Anomaly-Induced Local Part -- 16.3 Effective Actions: Global Part -- 16.3.1 Topologically Trivial Sector -- 16.3.2 Topologically Non-trivial Sectors -- 16.4 Computing the Zero Modes -- 16.5 Chiral Condensate at Finite T and L -- 16.6 Wilson Loops, Field Strength, and 2-Point Function -- 16.6.1 Correlation Functions of the Field Strength -- 16.6.2 Wilson Loops and Charge Screening -- 16.6.3 Polyakov Loops (Thermal Wilson Loops) -- 16.6.4 Gauge-Invariant Fermionic Two-Point Functions -- 16.7 Massive Multi-Flavor Schwinger Model on the Lattice -- 16.7.1 Lattice Simulations -- 16.8 Problems -- References -- 17 Interacting Fermions -- 17.1 Symmetries of Fermi Systems -- 17.2 Four-Fermi Theories -- 17.2.1 Thirring Model -- 17.2.2 (Chiral) Gross-Neveu Model. 17.2.3 Nambu-Jona-Lasinio Model. |
| Record Nr. | UNISA-996466850503316 |
Wipf Andreas
|
||
| Cham, Switzerland : , : Springer, , [2021] | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Statistical Approach to Quantum Field Theory [[electronic resource] ] : An Introduction / / by Andreas Wipf
| Statistical Approach to Quantum Field Theory [[electronic resource] ] : An Introduction / / by Andreas Wipf |
| Autore | Wipf Andreas |
| Edizione | [1st ed. 2013.] |
| Pubbl/distr/stampa | Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2013 |
| Descrizione fisica | 1 online resource (XVIII, 390 p. 133 illus.) |
| Disciplina | 530.143 |
| Collana | Lecture Notes in Physics |
| Soggetto topico |
Physics
Statistical physics Dynamical systems Quantum field theory String theory Elementary particles (Physics) Mathematical Methods in Physics Complex Systems Quantum Field Theories, String Theory Elementary Particles, Quantum Field Theory Numerical and Computational Physics, Simulation Statistical Physics and Dynamical Systems |
| ISBN | 3-642-33105-X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Introduction -- Path Integrals in Quantum and Statistical Mechanics -- High-Dimensional Integrals -- Monte-Carlo Simulations in Quantum Mechanics -- Scalar Fields at Zero and Finite Temperature -- Classical Spin Models: An Introduction -- Mean Field Approximation -- Transfer Matrices, Correlation Inequalities and Roots of Partition Functions -- High-Temperature and Low-Temperature Expansions -- Peierls Argument and Duality Transformations -- Renormalization Group on the Lattice -- Functional Renormalization Group -- Lattice Gauge Theories -- Two-dimensional Lattice Gauge Theories and Group Integrals -- Fermions on a Lattice -- Index. |
| Record Nr. | UNISA-996466687003316 |
Wipf Andreas
|
||
| Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2013 | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
A statistical approach to quantum field theory : an introduction / / Andreas Wipf
| A statistical approach to quantum field theory : an introduction / / Andreas Wipf |
| Autore | Wipf Andreas |
| Edizione | [1st ed. 2013.] |
| Pubbl/distr/stampa | Heidelberg ; ; New York, : Springer Verlag, c2013 |
| Descrizione fisica | 1 online resource (XVIII, 390 p. 133 illus.) |
| Disciplina | 530.143 |
| Collana | Lecture notes in physics |
| Soggetto topico |
Quantum field theory - Mathematics
Field theory (Physics) |
| ISBN | 3-642-33105-X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Introduction -- Path Integrals in Quantum and Statistical Mechanics -- High-Dimensional Integrals -- Monte-Carlo Simulations in Quantum Mechanics -- Scalar Fields at Zero and Finite Temperature -- Classical Spin Models: An Introduction -- Mean Field Approximation -- Transfer Matrices, Correlation Inequalities and Roots of Partition Functions -- High-Temperature and Low-Temperature Expansions -- Peierls Argument and Duality Transformations -- Renormalization Group on the Lattice -- Functional Renormalization Group -- Lattice Gauge Theories -- Two-dimensional Lattice Gauge Theories and Group Integrals -- Fermions on a Lattice -- Index. |
| Record Nr. | UNINA-9910130581503321 |
Wipf Andreas
|
||
| Heidelberg ; ; New York, : Springer Verlag, c2013 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||