top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Decision making [[electronic resource] ] : a psychophysics application of network science, Center for Nonlinear Science, University of North Texas, USA, 10-13 January 2010 / / editors, Paolo Grigolini, Bruce J. West
Decision making [[electronic resource] ] : a psychophysics application of network science, Center for Nonlinear Science, University of North Texas, USA, 10-13 January 2010 / / editors, Paolo Grigolini, Bruce J. West
Pubbl/distr/stampa Singapore ; ; Hackensack, N.J., : World Scientific, 2011
Descrizione fisica 1 online resource (207 p.)
Disciplina 612.8
Altri autori (Persone) GrigoliniPaolo
WestBruce J
Collana Studies of nonlinear phenomena in life science
Soggetto topico Neural networks (Neurobiology)
Chaotic behavior in systems
Complexity (Philosophy)
Decision making - Physiological aspects
Soggetto genere / forma Electronic books.
ISBN 1-283-43402-4
9786613434029
981-4365-82-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface; CONTENTS; 1. Overview of ARO program on network science for human decision making B.J. West; 1. Introduction; 2. Background; 2.1. What we know about networks; 2.2. What we do not know about the linking of physical and human networks; 3. What We Have Been Doing; 3.1. Complexity theory and modeling without scales; 3.2. Information propagation in complex adaptive networks; 4. Preliminary Conclusions; References; 2. Viewing the extended mind hypothesis (Clark & Chambers) in terms of complex systems dynamics G. Werner; 1. Background; 2. On the Extended Mind Hypothesis
3. Brain and World as ONE Complex Dynamical System4. Praxis Ahead of Theory; 5. Conclusion; References; 3. Uncertainty in psychophysics: Deriving a network of psychophysical equations K.H. Norwich; 1. Introduction; 2. Philosophical Underpinnings; 3. Mathematical Representation of the Psychophysical Law (Weber-Fechner and Stevens); 4. A Network of Equations Issuing from the Entropic Form of the Psychophysical Law; 4.1. The differential threshold ( DH from Fechner's conjecture) and Weber's fraction; 4.2. The hyperbolic law governing the magnitude of n ( DH from Miller's magical number)
4.3. Simple reaction time ( DH is the minimum quantity of information needed to react)5. Searching for Support within Thermodynamics and Statistical Physics; 5.1. Emergence of the Weber-Fechner law from thermodynamics; 6. Discussion; 6.1. Review; 6.2. Quantum Sufficiat; Acknowledgements; References; 4. The collective brain E. Tagliazucchi and D.R. Chialvo; 1. Introduction; 2. Emergent Complex Dynamics is always Critical; 3. The Collective Large-scale Brain Dynamics; 4. Neuronal Avalanching in Small Scale is Critical; 5. Psychophysics and Behavior; 6. An Evolutionary Perspective
7. Noise or Critical Fluctuations? Equilibrium vs Non-equilibrium8. Outlook; Acknowledgements; References; 5. Acquiring long-range memory through adaptive avalanches S. Boettcher; 1. Introduction; 2. Motivation from Self-organized Criticality; 3. Spin Glass Ground States with Extremal Optimization; 4. EO Dynamics; 5. Annealed Optimization Model; 6. Evolution Equations for Local Search Heuristics; 6.1. Extremal optimization algorithm; 6.2. Update probabilities for extremal optimization; 6.3. Update probabilities for metropolis algorithms; 6.4. Evolution equations for a simple barrier model
6.5. Jamming model for -EOReferences; 6. Random walk of complex networks: From infinitely slow to instantaneous transition to equilibrium N.W. Hollingshad, P. Grigolini and P. Allegrini; 1. Introduction; 2. Preliminary Remarks on the Size of a Complex Network; 3. On the Master Matrix A; 4. Transition to Equilibrium in Hierarchical Networks; 5. Return to the Origin in a Scale-free Network; 5.1. Ad hoc scale-free network; 5.2. Hierarchical network; 6. Conclusions; Acknowledgements; References; 7. Coherence and complexity M. Bologna, E. Geneston, P. Grigolini, M. Turalska and M. Lukovic
1. Introduction
Record Nr. UNINA-9910457515503321
Singapore ; ; Hackensack, N.J., : World Scientific, 2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Decision making [[electronic resource] ] : a psychophysics application of network science, Center for Nonlinear Science, University of North Texas, USA, 10-13 January 2010 / / editors, Paolo Grigolini, Bruce J. West
Decision making [[electronic resource] ] : a psychophysics application of network science, Center for Nonlinear Science, University of North Texas, USA, 10-13 January 2010 / / editors, Paolo Grigolini, Bruce J. West
Pubbl/distr/stampa Singapore ; ; Hackensack, N.J., : World Scientific, 2011
Descrizione fisica 1 online resource (207 p.)
Disciplina 612.8
Altri autori (Persone) GrigoliniPaolo
WestBruce J
Collana Studies of nonlinear phenomena in life science
Soggetto topico Neural networks (Neurobiology)
Chaotic behavior in systems
Complexity (Philosophy)
Decision making - Physiological aspects
ISBN 1-283-43402-4
9786613434029
981-4365-82-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface; CONTENTS; 1. Overview of ARO program on network science for human decision making B.J. West; 1. Introduction; 2. Background; 2.1. What we know about networks; 2.2. What we do not know about the linking of physical and human networks; 3. What We Have Been Doing; 3.1. Complexity theory and modeling without scales; 3.2. Information propagation in complex adaptive networks; 4. Preliminary Conclusions; References; 2. Viewing the extended mind hypothesis (Clark & Chambers) in terms of complex systems dynamics G. Werner; 1. Background; 2. On the Extended Mind Hypothesis
3. Brain and World as ONE Complex Dynamical System4. Praxis Ahead of Theory; 5. Conclusion; References; 3. Uncertainty in psychophysics: Deriving a network of psychophysical equations K.H. Norwich; 1. Introduction; 2. Philosophical Underpinnings; 3. Mathematical Representation of the Psychophysical Law (Weber-Fechner and Stevens); 4. A Network of Equations Issuing from the Entropic Form of the Psychophysical Law; 4.1. The differential threshold ( DH from Fechner's conjecture) and Weber's fraction; 4.2. The hyperbolic law governing the magnitude of n ( DH from Miller's magical number)
4.3. Simple reaction time ( DH is the minimum quantity of information needed to react)5. Searching for Support within Thermodynamics and Statistical Physics; 5.1. Emergence of the Weber-Fechner law from thermodynamics; 6. Discussion; 6.1. Review; 6.2. Quantum Sufficiat; Acknowledgements; References; 4. The collective brain E. Tagliazucchi and D.R. Chialvo; 1. Introduction; 2. Emergent Complex Dynamics is always Critical; 3. The Collective Large-scale Brain Dynamics; 4. Neuronal Avalanching in Small Scale is Critical; 5. Psychophysics and Behavior; 6. An Evolutionary Perspective
7. Noise or Critical Fluctuations? Equilibrium vs Non-equilibrium8. Outlook; Acknowledgements; References; 5. Acquiring long-range memory through adaptive avalanches S. Boettcher; 1. Introduction; 2. Motivation from Self-organized Criticality; 3. Spin Glass Ground States with Extremal Optimization; 4. EO Dynamics; 5. Annealed Optimization Model; 6. Evolution Equations for Local Search Heuristics; 6.1. Extremal optimization algorithm; 6.2. Update probabilities for extremal optimization; 6.3. Update probabilities for metropolis algorithms; 6.4. Evolution equations for a simple barrier model
6.5. Jamming model for -EOReferences; 6. Random walk of complex networks: From infinitely slow to instantaneous transition to equilibrium N.W. Hollingshad, P. Grigolini and P. Allegrini; 1. Introduction; 2. Preliminary Remarks on the Size of a Complex Network; 3. On the Master Matrix A; 4. Transition to Equilibrium in Hierarchical Networks; 5. Return to the Origin in a Scale-free Network; 5.1. Ad hoc scale-free network; 5.2. Hierarchical network; 6. Conclusions; Acknowledgements; References; 7. Coherence and complexity M. Bologna, E. Geneston, P. Grigolini, M. Turalska and M. Lukovic
1. Introduction
Record Nr. UNINA-9910778958403321
Singapore ; ; Hackensack, N.J., : World Scientific, 2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Decision making : a psychophysics application of network science, Center for Nonlinear Science, University of North Texas, USA, 10-13 January 2010 / / editors, Paolo Grigolini, Bruce J. West
Decision making : a psychophysics application of network science, Center for Nonlinear Science, University of North Texas, USA, 10-13 January 2010 / / editors, Paolo Grigolini, Bruce J. West
Edizione [1st ed.]
Pubbl/distr/stampa Singapore ; ; Hackensack, N.J., : World Scientific, 2011
Descrizione fisica 1 online resource (207 p.)
Disciplina 612.8
Altri autori (Persone) GrigoliniPaolo
WestBruce J
Collana Studies of nonlinear phenomena in life science
Soggetto topico Neural networks (Neurobiology)
Chaotic behavior in systems
Complexity (Philosophy)
Decision making - Physiological aspects
ISBN 1-283-43402-4
9786613434029
981-4365-82-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface; CONTENTS; 1. Overview of ARO program on network science for human decision making B.J. West; 1. Introduction; 2. Background; 2.1. What we know about networks; 2.2. What we do not know about the linking of physical and human networks; 3. What We Have Been Doing; 3.1. Complexity theory and modeling without scales; 3.2. Information propagation in complex adaptive networks; 4. Preliminary Conclusions; References; 2. Viewing the extended mind hypothesis (Clark & Chambers) in terms of complex systems dynamics G. Werner; 1. Background; 2. On the Extended Mind Hypothesis
3. Brain and World as ONE Complex Dynamical System4. Praxis Ahead of Theory; 5. Conclusion; References; 3. Uncertainty in psychophysics: Deriving a network of psychophysical equations K.H. Norwich; 1. Introduction; 2. Philosophical Underpinnings; 3. Mathematical Representation of the Psychophysical Law (Weber-Fechner and Stevens); 4. A Network of Equations Issuing from the Entropic Form of the Psychophysical Law; 4.1. The differential threshold ( DH from Fechner's conjecture) and Weber's fraction; 4.2. The hyperbolic law governing the magnitude of n ( DH from Miller's magical number)
4.3. Simple reaction time ( DH is the minimum quantity of information needed to react)5. Searching for Support within Thermodynamics and Statistical Physics; 5.1. Emergence of the Weber-Fechner law from thermodynamics; 6. Discussion; 6.1. Review; 6.2. Quantum Sufficiat; Acknowledgements; References; 4. The collective brain E. Tagliazucchi and D.R. Chialvo; 1. Introduction; 2. Emergent Complex Dynamics is always Critical; 3. The Collective Large-scale Brain Dynamics; 4. Neuronal Avalanching in Small Scale is Critical; 5. Psychophysics and Behavior; 6. An Evolutionary Perspective
7. Noise or Critical Fluctuations? Equilibrium vs Non-equilibrium8. Outlook; Acknowledgements; References; 5. Acquiring long-range memory through adaptive avalanches S. Boettcher; 1. Introduction; 2. Motivation from Self-organized Criticality; 3. Spin Glass Ground States with Extremal Optimization; 4. EO Dynamics; 5. Annealed Optimization Model; 6. Evolution Equations for Local Search Heuristics; 6.1. Extremal optimization algorithm; 6.2. Update probabilities for extremal optimization; 6.3. Update probabilities for metropolis algorithms; 6.4. Evolution equations for a simple barrier model
6.5. Jamming model for -EOReferences; 6. Random walk of complex networks: From infinitely slow to instantaneous transition to equilibrium N.W. Hollingshad, P. Grigolini and P. Allegrini; 1. Introduction; 2. Preliminary Remarks on the Size of a Complex Network; 3. On the Master Matrix A; 4. Transition to Equilibrium in Hierarchical Networks; 5. Return to the Origin in a Scale-free Network; 5.1. Ad hoc scale-free network; 5.2. Hierarchical network; 6. Conclusions; Acknowledgements; References; 7. Coherence and complexity M. Bologna, E. Geneston, P. Grigolini, M. Turalska and M. Lukovic
1. Introduction
Record Nr. UNINA-9910828215903321
Singapore ; ; Hackensack, N.J., : World Scientific, 2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Fractional Calculus and the Future of Science
Fractional Calculus and the Future of Science
Autore West Bruce J
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 electronic resource (312 p.)
Soggetto topico Research & information: general
Mathematics & science
Soggetto non controllato fractional diffusion
continuous time random walks
reaction-diffusion equations
reaction kinetics
multidimensional scaling
fractals
fractional calculus
financial indices
entropy
Dow Jones
complex systems
Skellam process
subordination
Lévy measure
Poisson process of order k
running average
complexity
chaos
logistic differential equation
liouville-caputo fractional derivative
local discontinuous Galerkin methods
stability estimate
Mittag-Leffler functions
Wright functions
fractional relaxation
diffusion-wave equation
Laplace and Fourier transform
fractional Poisson process complex systems
distributed-order operators
viscoelasticity
transport processes
control theory
fractional order PID control
PMSM
frequency-domain control design
optimal tuning
Gaussian watermarks
statistical assessment
false positive rate
semi-fragile watermarking system
fractional dynamics
fractional-order thinking
heavytailedness
big data
machine learning
variability
diversity
telegrapher's equations
fractional telegrapher's equation
continuous time random walk
transport problems
fractional conservations laws
variable fractional model
turbulent flows
fractional PINN
physics-informed learning
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910566468103321
West Bruce J  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui