top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Derived Functors in Functional Analysis [[electronic resource] /] / by Jochen Wengenroth
Derived Functors in Functional Analysis [[electronic resource] /] / by Jochen Wengenroth
Autore Wengenroth Jochen
Edizione [1st ed. 2003.]
Pubbl/distr/stampa Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2003
Descrizione fisica 1 online resource (X, 138 p.)
Disciplina 515.7
Collana Lecture Notes in Mathematics
Soggetto topico Functional analysis
Category theory (Mathematics)
Homological algebra
Partial differential equations
Functional Analysis
Category Theory, Homological Algebra
Partial Differential Equations
ISBN 3-540-36211-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction -- Notions from homological algebra: Derived Functors; The category of locally convex spaces -- The projective limit functor for countable spectra: Projective limits of linear spaces; The Mittag-Leffler procedure; Projective limits of locally convex spaces; Some Applications: The Mittag-Leffler theorem; Separating singularities; Surjectivity of the Cauchy-Riemann operator; Surjectivity of P(D) on spaces of smooth functions; Surjectivity of P(D) the space of distributions; Differential operators for ultradifferentiable functions of Roumieu type -- Uncountable projective spectra: Projective spectra of linear spaces; Insertion: The completion functor; Projective spectra of locally convex spaces -- The derived functors of Hom: Extk in the category of locally convex spaces; Splitting theory for Fréchet spaces; Splitting in the category of (PLS)-spaces -- Inductive spectra of locally convex spaces -- The duality functor -- References -- Index.
Record Nr. UNISA-996466594303316
Wengenroth Jochen  
Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2003
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Derived Functors in Functional Analysis / / by Jochen Wengenroth
Derived Functors in Functional Analysis / / by Jochen Wengenroth
Autore Wengenroth Jochen
Edizione [1st ed. 2003.]
Pubbl/distr/stampa Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2003
Descrizione fisica 1 online resource (X, 138 p.)
Disciplina 515.7
Collana Lecture Notes in Mathematics
Soggetto topico Functional analysis
Categories (Mathematics)
Algebra, Homological
Differential equations, Partial
Functional Analysis
Category Theory, Homological Algebra
Partial Differential Equations
ISBN 3-540-36211-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction -- Notions from homological algebra: Derived Functors; The category of locally convex spaces -- The projective limit functor for countable spectra: Projective limits of linear spaces; The Mittag-Leffler procedure; Projective limits of locally convex spaces; Some Applications: The Mittag-Leffler theorem; Separating singularities; Surjectivity of the Cauchy-Riemann operator; Surjectivity of P(D) on spaces of smooth functions; Surjectivity of P(D) the space of distributions; Differential operators for ultradifferentiable functions of Roumieu type -- Uncountable projective spectra: Projective spectra of linear spaces; Insertion: The completion functor; Projective spectra of locally convex spaces -- The derived functors of Hom: Extk in the category of locally convex spaces; Splitting theory for Fréchet spaces; Splitting in the category of (PLS)-spaces -- Inductive spectra of locally convex spaces -- The duality functor -- References -- Index.
Record Nr. UNINA-9910144634303321
Wengenroth Jochen  
Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2003
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui