Vai al contenuto principale della pagina

Uncertain Data Envelopment Analysis / / by Meilin Wen



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Wen Meilin Visualizza persona
Titolo: Uncertain Data Envelopment Analysis / / by Meilin Wen Visualizza cluster
Pubblicazione: Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2015
Edizione: 1st ed. 2015.
Descrizione fisica: 1 online resource (157 p.)
Disciplina: 519.72
Soggetto topico: Operations research
Decision making
Operations Research/Decision Theory
Note generali: Description based upon print version of record.
Nota di bibliografia: Includes bibliographical references at the end of each chapters.
Nota di contenuto: Uncertain Theories -- Introduction to DEA -- Stochastic DEA -- Fuzzy DEA -- Uncertain DEA -- Hybrid DEA.
Sommario/riassunto: This book is intended to present the milestones in the progression of uncertain Data envelopment analysis (DEA). Chapter 1 gives some basic introduction to uncertain theories, including probability theory, credibility theory, uncertainty theory and chance theory. Chapter 2 presents a comprehensive review and discussion of basic DEA models. The stochastic DEA is introduced in Chapter 3, in which the inputs and outputs are assumed to be random variables. To obtain the probability distribution of a random variable, a lot of samples are needed to apply the statistics inference approach. Chapter 4 and 5 provide two uncertain DEA methods to evaluate the DMUs with limited or insufficient statistical data, named fuzzy DEA and uncertain DEA. In order to evaluate the DMUs in which uncertainty and randomness appear simultaneously, the hybrid DEA based on chance theory is presented in Chapter 6.
Titolo autorizzato: Uncertain Data Envelopment Analysis  Visualizza cluster
ISBN: 3-662-43802-X
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910298501903321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Uncertainty and Operations Research, . 2195-996X