top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Handbook of Variational Methods for Nonlinear Geometric Data [[electronic resource] /] / edited by Philipp Grohs, Martin Holler, Andreas Weinmann
Handbook of Variational Methods for Nonlinear Geometric Data [[electronic resource] /] / edited by Philipp Grohs, Martin Holler, Andreas Weinmann
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (XXVI, 701 p. 159 illus., 125 illus. in color.)
Disciplina 515.64
Soggetto topico Computer mathematics
Computer science—Mathematics
Optical data processing
Computational Mathematics and Numerical Analysis
Math Applications in Computer Science
Image Processing and Computer Vision
Mathematical Applications in Computer Science
ISBN 3-030-31351-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1. Geometric Finite Elements -- 2. Non-smooth variational regularization for processing manifold-valued data -- 3. Lifting methods for manifold-valued variational problems -- 4. Geometric subdivision and multiscale transforms -- 5. Variational Methods for Discrete Geometric Functionals -- 6 Variational methods for fluid-structure interactions -- 7. Convex lifting-type methods for curvature regularization -- 8. Assignment Flows -- 9. Geometric methods on low-rank matrix and tensor manifolds -- 10. Statistical Methods Generalizing Principal Component Analysis to Non-Euclidean Spaces -- 11. Advances in Geometric Statistics for manifold dimension reduction -- 12. Deep Variational Inference.­­- 13. Shape Analysis of Functional Data -- 14. Statistical Analysis of Trajectories of Multi-Modality Data -- 15. Geometric Metrics for Topological Representations -- 16. On Geometric Invariants, Learning, and Recognition of Shapes and Forms -- 17. Sub-Riemannian Methods in Shape Analysis -- 18. First order methods for optimization on Riemannian manifolds -- 19. Recent Advances in Stochastic Riemannian Optimization -- 20. Averaging symmetric positive-definite matrices -- 21. Rolling Maps and Nonlinear Data -- 22. Manifold-valued Data in Medical Imaging Applications -- 23. The Riemannian and Affine Geometry of Facial Expression and Action Recognition -- 24. Biomedical Applications of Geometric Functional Data Analysis.
Record Nr. UNISA-996418277603316
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Handbook of Variational Methods for Nonlinear Geometric Data / / edited by Philipp Grohs, Martin Holler, Andreas Weinmann
Handbook of Variational Methods for Nonlinear Geometric Data / / edited by Philipp Grohs, Martin Holler, Andreas Weinmann
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (XXVI, 701 p. 159 illus., 125 illus. in color.)
Disciplina 515.64
Soggetto topico Computer mathematics
Computer science—Mathematics
Optical data processing
Computational Mathematics and Numerical Analysis
Math Applications in Computer Science
Image Processing and Computer Vision
Mathematical Applications in Computer Science
ISBN 3-030-31351-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1. Geometric Finite Elements -- 2. Non-smooth variational regularization for processing manifold-valued data -- 3. Lifting methods for manifold-valued variational problems -- 4. Geometric subdivision and multiscale transforms -- 5. Variational Methods for Discrete Geometric Functionals -- 6 Variational methods for fluid-structure interactions -- 7. Convex lifting-type methods for curvature regularization -- 8. Assignment Flows -- 9. Geometric methods on low-rank matrix and tensor manifolds -- 10. Statistical Methods Generalizing Principal Component Analysis to Non-Euclidean Spaces -- 11. Advances in Geometric Statistics for manifold dimension reduction -- 12. Deep Variational Inference.­­- 13. Shape Analysis of Functional Data -- 14. Statistical Analysis of Trajectories of Multi-Modality Data -- 15. Geometric Metrics for Topological Representations -- 16. On Geometric Invariants, Learning, and Recognition of Shapes and Forms -- 17. Sub-Riemannian Methods in Shape Analysis -- 18. First order methods for optimization on Riemannian manifolds -- 19. Recent Advances in Stochastic Riemannian Optimization -- 20. Averaging symmetric positive-definite matrices -- 21. Rolling Maps and Nonlinear Data -- 22. Manifold-valued Data in Medical Imaging Applications -- 23. The Riemannian and Affine Geometry of Facial Expression and Action Recognition -- 24. Biomedical Applications of Geometric Functional Data Analysis.
Record Nr. UNINA-9910483711103321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui