top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Magnetoseismology [[electronic resource] ] : ground-based remote sensing of Earth's magnetosphere / / Frederick W. Menk and Colin L. Waters
Magnetoseismology [[electronic resource] ] : ground-based remote sensing of Earth's magnetosphere / / Frederick W. Menk and Colin L. Waters
Autore Menk Frederick W
Pubbl/distr/stampa Weinheim, : Wiley-VCH, c2013
Descrizione fisica 1 online resource (281 p.)
Disciplina 538.766
Altri autori (Persone) WatersColin L
Soggetto topico Magnetosphere
Magnetospheric physics
Soggetto genere / forma Electronic books.
ISBN 3-527-65207-8
3-527-65205-1
3-527-65208-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Magnetoseismology: Ground-based remote sensing of the Earth's magnetosphere; Contents; Preface; Color Plates; 1 Introduction; 1.1 Purpose of This Book; 1.2 The Solar Wind; 1.3 Fluctuations in the Solar Wind; 1.4 Early Observations of Geomagnetic Variations; 1.5 Properties of Geomagnetic Variations; 2 The Magnetosphere and Ionosphere; 2.1 The Geomagnetic Field; 2.2 Structure of Earth's Magnetosphere; 2.3 Magnetospheric Current Systems; 2.3.1 Magnetopause Current; 2.3.2 Tail Current and Reconnection; 2.3.3 Ring Current; 2.3.4 Field-Aligned Currents; 2.3.5 Ionospheric Currents
2.4 The Radiation Belts2.5 The Inner Magnetosphere; 2.6 Formation and Properties of the Ionosphere; 2.7 Geomagnetic Disturbances; 2.8 Space Weather Effects; 3 ULF Plasma Waves in the Magnetosphere; 3.1 Basic Properties of a Plasma; 3.2 Particle Motions; 3.2.1 Motions of Isolated Charged Particles; 3.2.2 First Adiabatic Invariant; 3.2.3 Second Adiabatic Invariant; 3.2.4 Third Adiabatic Invariant; 3.3 Low-Frequency Magnetized Plasma Waves; 3.3.1 Equations of Linear MHD; 3.3.2 The Wave Equation; 3.4 The Shear Alfv en Mode in a Dipole Magnetic Field; 3.4.1 Toroidal Oscillation of Field Lines
3.5 MHD Wave Mode Coupling in One Dimension3.6 An Alternative Derivation of the Plasma Wave Equation, from Electromagnetism; 4 Sources of ULF Waves; 4.1 Introduction; 4.2 Exogenic Sources; 4.3 Boundary Instabilities; 4.4 Field Line Resonances; 4.5 Cavity and Waveguide Modes; 4.6 Spatially Localized Waves; 4.7 Ion Cyclotron Waves; 5 Techniques for Detecting Field Line Resonances; 5.1 Introduction; 5.2 Variation in Spectral Power with Latitude; 5.3 Variation of Phase with Latitude; 5.4 Wave Polarization Properties; 5.5 Spectral Power Difference and Division; 5.6 Single Station H/D
5.7 Cross-Phase from Latitudinally Separated Sensors5.8 Using ULF Wave Polarization Properties; 5.9 Automated Detection Algorithms; 6 Ground-Based Remote Sensing of the Magnetosphere; 6.1 Estimating Plasma Mass Density; 6.2 Travel Time Method of Tamao; 6.3 Determining Electron Density; 6.4 Verification of Ground-Based Mass Density Measurements; 6.5 Determining Ion Concentrations; 6.6 Field-Aligned Plasma Density; 6.7 Plasma Density at Low Latitudes; 6.8 Plasma Density at High Latitudes; 7 Space Weather Applications; 7.1 Magnetospheric Structure and Density; 7.2 Plasmapause Dynamics
7.3 Density Notches, Plumes, and Related Features7.4 Refilling of the Plasmasphere; 7.5 Longitudinal Variation in Density; 7.6 Solar Cycle Variations in Density; 7.7 Determining the Open/Closed Field Line Boundary; 7.8 Determining the Magnetospheric Topology at High Latitudes; 7.9 Wave-Particle Interactions; 7.10 Radial Motions of Flux Tubes; 8 ULF Waves in the Ionosphere; 8.1 Introduction; 8.2 Electrostatic and Inductive Ionospheres; 8.3 ULF Wave Solution for a Thin Sheet Ionosphere; 8.4 ULF Wave Solution for a Realistic Ionosphere; 8.5 FLRs and the Ionosphere
8.6 Remote Sensing ULF Electric Fields in Space
Record Nr. UNINA-9910141797003321
Menk Frederick W  
Weinheim, : Wiley-VCH, c2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Magnetoseismology [[electronic resource] ] : ground-based remote sensing of Earth's magnetosphere / / Frederick W. Menk and Colin L. Waters
Magnetoseismology [[electronic resource] ] : ground-based remote sensing of Earth's magnetosphere / / Frederick W. Menk and Colin L. Waters
Autore Menk Frederick W
Pubbl/distr/stampa Weinheim, : Wiley-VCH, c2013
Descrizione fisica 1 online resource (281 p.)
Disciplina 538.766
Altri autori (Persone) WatersColin L
Soggetto topico Magnetosphere
Magnetospheric physics
ISBN 3-527-65207-8
3-527-65205-1
3-527-65208-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Magnetoseismology: Ground-based remote sensing of the Earth's magnetosphere; Contents; Preface; Color Plates; 1 Introduction; 1.1 Purpose of This Book; 1.2 The Solar Wind; 1.3 Fluctuations in the Solar Wind; 1.4 Early Observations of Geomagnetic Variations; 1.5 Properties of Geomagnetic Variations; 2 The Magnetosphere and Ionosphere; 2.1 The Geomagnetic Field; 2.2 Structure of Earth's Magnetosphere; 2.3 Magnetospheric Current Systems; 2.3.1 Magnetopause Current; 2.3.2 Tail Current and Reconnection; 2.3.3 Ring Current; 2.3.4 Field-Aligned Currents; 2.3.5 Ionospheric Currents
2.4 The Radiation Belts2.5 The Inner Magnetosphere; 2.6 Formation and Properties of the Ionosphere; 2.7 Geomagnetic Disturbances; 2.8 Space Weather Effects; 3 ULF Plasma Waves in the Magnetosphere; 3.1 Basic Properties of a Plasma; 3.2 Particle Motions; 3.2.1 Motions of Isolated Charged Particles; 3.2.2 First Adiabatic Invariant; 3.2.3 Second Adiabatic Invariant; 3.2.4 Third Adiabatic Invariant; 3.3 Low-Frequency Magnetized Plasma Waves; 3.3.1 Equations of Linear MHD; 3.3.2 The Wave Equation; 3.4 The Shear Alfv en Mode in a Dipole Magnetic Field; 3.4.1 Toroidal Oscillation of Field Lines
3.5 MHD Wave Mode Coupling in One Dimension3.6 An Alternative Derivation of the Plasma Wave Equation, from Electromagnetism; 4 Sources of ULF Waves; 4.1 Introduction; 4.2 Exogenic Sources; 4.3 Boundary Instabilities; 4.4 Field Line Resonances; 4.5 Cavity and Waveguide Modes; 4.6 Spatially Localized Waves; 4.7 Ion Cyclotron Waves; 5 Techniques for Detecting Field Line Resonances; 5.1 Introduction; 5.2 Variation in Spectral Power with Latitude; 5.3 Variation of Phase with Latitude; 5.4 Wave Polarization Properties; 5.5 Spectral Power Difference and Division; 5.6 Single Station H/D
5.7 Cross-Phase from Latitudinally Separated Sensors5.8 Using ULF Wave Polarization Properties; 5.9 Automated Detection Algorithms; 6 Ground-Based Remote Sensing of the Magnetosphere; 6.1 Estimating Plasma Mass Density; 6.2 Travel Time Method of Tamao; 6.3 Determining Electron Density; 6.4 Verification of Ground-Based Mass Density Measurements; 6.5 Determining Ion Concentrations; 6.6 Field-Aligned Plasma Density; 6.7 Plasma Density at Low Latitudes; 6.8 Plasma Density at High Latitudes; 7 Space Weather Applications; 7.1 Magnetospheric Structure and Density; 7.2 Plasmapause Dynamics
7.3 Density Notches, Plumes, and Related Features7.4 Refilling of the Plasmasphere; 7.5 Longitudinal Variation in Density; 7.6 Solar Cycle Variations in Density; 7.7 Determining the Open/Closed Field Line Boundary; 7.8 Determining the Magnetospheric Topology at High Latitudes; 7.9 Wave-Particle Interactions; 7.10 Radial Motions of Flux Tubes; 8 ULF Waves in the Ionosphere; 8.1 Introduction; 8.2 Electrostatic and Inductive Ionospheres; 8.3 ULF Wave Solution for a Thin Sheet Ionosphere; 8.4 ULF Wave Solution for a Realistic Ionosphere; 8.5 FLRs and the Ionosphere
8.6 Remote Sensing ULF Electric Fields in Space
Record Nr. UNINA-9910830631503321
Menk Frederick W  
Weinheim, : Wiley-VCH, c2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Magnetoseismology : ground-based remote sensing of Earth's magnetosphere / / Frederick W. Menk and Colin L. Waters
Magnetoseismology : ground-based remote sensing of Earth's magnetosphere / / Frederick W. Menk and Colin L. Waters
Autore Menk Frederick W
Pubbl/distr/stampa Weinheim, : Wiley-VCH, c2013
Descrizione fisica 1 online resource (281 p.)
Disciplina 538.766
Altri autori (Persone) WatersColin L
Soggetto topico Magnetosphere
Magnetospheric physics
ISBN 3-527-65207-8
3-527-65205-1
3-527-65208-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Magnetoseismology: Ground-based remote sensing of the Earth's magnetosphere; Contents; Preface; Color Plates; 1 Introduction; 1.1 Purpose of This Book; 1.2 The Solar Wind; 1.3 Fluctuations in the Solar Wind; 1.4 Early Observations of Geomagnetic Variations; 1.5 Properties of Geomagnetic Variations; 2 The Magnetosphere and Ionosphere; 2.1 The Geomagnetic Field; 2.2 Structure of Earth's Magnetosphere; 2.3 Magnetospheric Current Systems; 2.3.1 Magnetopause Current; 2.3.2 Tail Current and Reconnection; 2.3.3 Ring Current; 2.3.4 Field-Aligned Currents; 2.3.5 Ionospheric Currents
2.4 The Radiation Belts2.5 The Inner Magnetosphere; 2.6 Formation and Properties of the Ionosphere; 2.7 Geomagnetic Disturbances; 2.8 Space Weather Effects; 3 ULF Plasma Waves in the Magnetosphere; 3.1 Basic Properties of a Plasma; 3.2 Particle Motions; 3.2.1 Motions of Isolated Charged Particles; 3.2.2 First Adiabatic Invariant; 3.2.3 Second Adiabatic Invariant; 3.2.4 Third Adiabatic Invariant; 3.3 Low-Frequency Magnetized Plasma Waves; 3.3.1 Equations of Linear MHD; 3.3.2 The Wave Equation; 3.4 The Shear Alfv en Mode in a Dipole Magnetic Field; 3.4.1 Toroidal Oscillation of Field Lines
3.5 MHD Wave Mode Coupling in One Dimension3.6 An Alternative Derivation of the Plasma Wave Equation, from Electromagnetism; 4 Sources of ULF Waves; 4.1 Introduction; 4.2 Exogenic Sources; 4.3 Boundary Instabilities; 4.4 Field Line Resonances; 4.5 Cavity and Waveguide Modes; 4.6 Spatially Localized Waves; 4.7 Ion Cyclotron Waves; 5 Techniques for Detecting Field Line Resonances; 5.1 Introduction; 5.2 Variation in Spectral Power with Latitude; 5.3 Variation of Phase with Latitude; 5.4 Wave Polarization Properties; 5.5 Spectral Power Difference and Division; 5.6 Single Station H/D
5.7 Cross-Phase from Latitudinally Separated Sensors5.8 Using ULF Wave Polarization Properties; 5.9 Automated Detection Algorithms; 6 Ground-Based Remote Sensing of the Magnetosphere; 6.1 Estimating Plasma Mass Density; 6.2 Travel Time Method of Tamao; 6.3 Determining Electron Density; 6.4 Verification of Ground-Based Mass Density Measurements; 6.5 Determining Ion Concentrations; 6.6 Field-Aligned Plasma Density; 6.7 Plasma Density at Low Latitudes; 6.8 Plasma Density at High Latitudes; 7 Space Weather Applications; 7.1 Magnetospheric Structure and Density; 7.2 Plasmapause Dynamics
7.3 Density Notches, Plumes, and Related Features7.4 Refilling of the Plasmasphere; 7.5 Longitudinal Variation in Density; 7.6 Solar Cycle Variations in Density; 7.7 Determining the Open/Closed Field Line Boundary; 7.8 Determining the Magnetospheric Topology at High Latitudes; 7.9 Wave-Particle Interactions; 7.10 Radial Motions of Flux Tubes; 8 ULF Waves in the Ionosphere; 8.1 Introduction; 8.2 Electrostatic and Inductive Ionospheres; 8.3 ULF Wave Solution for a Thin Sheet Ionosphere; 8.4 ULF Wave Solution for a Realistic Ionosphere; 8.5 FLRs and the Ionosphere
8.6 Remote Sensing ULF Electric Fields in Space
Record Nr. UNINA-9910877328203321
Menk Frederick W  
Weinheim, : Wiley-VCH, c2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui