top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
AI for Status Monitoring of Utility Scale Batteries
AI for Status Monitoring of Utility Scale Batteries
Autore Wang Shunli
Edizione [1st ed.]
Pubbl/distr/stampa Stevenage : , : Institution of Engineering & Technology, , 2023
Descrizione fisica 1 online resource (385 pages)
Disciplina 006.31
Altri autori (Persone) LiuKailong
WangYujie
StroeDaniel-Ioan
FernándezCarlos (Lecturer in Analytical Chemistry)
GuerreroJosep M
Collana Energy Engineering
Soggetto topico Machine learning
ISBN 1-83724-508-8
1-5231-5354-7
1-83953-739-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Halftitle Page -- Series Page -- Title Page -- Copyright -- Contents -- About the Authors -- Foreword -- Preface -- List of contributors -- 1 Introduction -- 1.1 Motivation for utility-scale battery deployment -- 1.2 Definition of AI in the context of battery management -- 1.3 Advantages of using AI for battery management -- 2 Utility-­scale lithium-­ion battery system characteristics -- 2.1 Overview of lithium-ion batteries -- 2.1.1 Battery working principle -- 2.1.2 Principles of status monitoring of utility-scale batteries -- 2.2 Lithium-ion batteries -- 2.2.1 Lithium iron phosphate batteries -- 2.2.2 Lithium cobaltate oxide batteries -- 2.2.3 Lithium manganese oxide batteries -- 2.3 Large capacity lithium-ion batteries -- 2.3.1 Application areas of utility-scale batteries -- 2.3.2 Characteristics of utility-scale battery systems -- 2.3.3 Operational challenges of utility-scale battery systems -- 3 AI-­based equivalent modeling and parameter identification -- 3.1 Overview of battery equivalent circuit modeling -- 3.2 Modeling types and concepts -- 3.3 Equivalent circuit modeling methods
Record Nr. UNINA-9911007155703321
Wang Shunli  
Stevenage : , : Institution of Engineering & Technology, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Data Science-Based Full-Lifespan Management of Lithium-Ion Battery : Manufacturing, Operation and Reutilization / / Kailong Liu, Yujie Wang, Xin Lai
Data Science-Based Full-Lifespan Management of Lithium-Ion Battery : Manufacturing, Operation and Reutilization / / Kailong Liu, Yujie Wang, Xin Lai
Autore Liu Kailong
Edizione [1st ed.]
Pubbl/distr/stampa Cham, : Springer International Publishing AG, 2022
Descrizione fisica 1 online resource (277 p.) : illustrations (chiefly color)
Altri autori (Persone) WangYujie
LaiXin
Collana Green Energy and Technology
Soggetto topico Battery management systems
Lithium ion batteries
ISBN 3-031-01340-9
Classificazione COM018000TEC021000TEC031000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1. Introduction to Battery Full-Lifespan Management --Chapter 2. Key Stages for Battery Full-Lifespan Management --Chapter 3. Data Science-based Battery Manufacturing Management --Chapter 4. Data Science-based Battery Operation Management I --Chapter 5. Data Science-based Battery Operation Management II --Chapter 6. Data Science-based Battery Reutilization Management --Chapter 7. The Ways Ahead.
Record Nr. UNINA-9910558694203321
Liu Kailong  
Cham, : Springer International Publishing AG, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui