top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Nanoscale Energy Transport : Emerging Phenomena, Methods and Applications
Nanoscale Energy Transport : Emerging Phenomena, Methods and Applications
Autore Liao Bolin
Edizione [1st ed.]
Pubbl/distr/stampa Bristol : , : Institute of Physics Publishing, , 2020
Descrizione fisica 1 online resource (488 pages)
Altri autori (Persone) FengTianli
LeeSangyeop
LenertAndrej
WangXiaojia
DaniKeshav
ReddyPramod
MiljkovicNenad
LuoTengfei
RenZhifeng
Collana IOP Ebooks Series
Soggetto topico Phonons
Thermal conductivity
ISBN 9780750341585
0750341580
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- References -- Editor biography -- Bolin Liao -- Contributors -- Outline placeholder -- Xun Li -- Sangyeop Lee -- Tianli Feng -- Xiulin Ruan -- Tengfei Luo -- Eungkyu Lee -- Ruiyang Li -- Zhiting Tian -- Jinghang Dai -- Renjiu Hu -- Jiang Guo -- Shenghong Ju -- Junichiro Shiomi -- Chengyun Hua -- Keivan Esfarjani -- Yuan Liang -- Pramod Reddy -- Edgar Meyhofer -- Longji Cui -- Dustin Lattery -- Jie Zhu -- Dingbin Huang -- Xiaojia Wang -- Rebecca Wong -- Michael Man -- Keshav Dani -- Chen Li -- Qiyang Sun -- Sunmi Shin -- Renkun Chen -- Hyeongyun Cha -- Soumyadip Sett -- Patrick Birbarah -- Tarek Gebrael -- Junho Oh -- Nenad Miljkovic -- Mona Zebarjadi -- Golam Rosul -- Sabbir Akhanda -- Shreyas Chavan -- Kalyan Boyina -- Longnan Li -- Qing Zhu -- Zhifeng Ren -- Tobias Burger -- Caroline Sempere -- Andrej Lenert -- Chapter 1 Hydrodynamic phonon transport: past, present and prospects -- 1.1 Introduction -- 1.2 Collective phonon flow -- 1.3 Peierls-Boltzmann transport equation -- 1.4 Steady-state phonon hydrodynamics -- 1.4.1 Infinitely large sample -- 1.4.2 Sample with an infinite length and a finite width -- 1.4.3 Sample with an infinite width and a finite length contacting hot and cold reservoirs -- 1.5 Unsteady phonon hydrodynamics (second sound) -- 1.6 Summary and future perspectives -- Acknowledgments -- References -- Chapter 2 Higher-order phonon scattering: advancing the quantum theory of phonon linewidth, thermal conductivity and thermal radiative properties -- 2.1 Overview -- 2.2 Formalism of four-phonon scattering -- 2.3 Strong four-phonon scattering potential -- 2.3.1 High temperature -- 2.3.2 Strongly anharmonic materials -- 2.4 Large four-phonon or suppressed three-phonon phase space -- 2.4.1 Materials with large acoustic-optical phonon band gaps -- 2.4.2 Optical phonons.
2.4.3 Two-dimensional materials with reflection symmetry -- 2.5 Further discussion -- 2.5.1 Scaling with frequency -- 2.5.2 Strong Umklapp scattering -- 2.5.3 Negligible three-phonon scattering to the second order -- 2.6 Summary and outlook -- References -- Chapter 3 Pre-interface scattering influenced interfacial thermal transport across solid interfaces -- References -- Chapter 4 Introduction to the atomistic Green's function approach: application to nanoscale phonon transport -- 4.1 Introduction -- 4.2 Atomistic Green's function -- 4.2.1 Deduction of atomistic Green's functions -- 4.2.2 Self-energy and surface Green's function -- 4.2.3 Phonon transport in one-dimensional systems -- 4.3 Recent progress -- 4.3.1 From one dimension to three dimensions -- 4.3.2 Polarization-specific transmission coefficient -- 4.3.3 Anharmonic Green's function -- 4.4 Summary -- Acknowledgments -- References -- Chapter 5 Application of Bayesian optimization to thermal science -- 5.1 Introduction -- 5.2 Bayesian optimization -- 5.2.1 Bayesian algorithm theory -- 5.2.2 Bayesian optimization implemented as a black-box tool -- 5.3 Applications of Bayesian optimization in thermal science -- 5.3.1 Thermal conductance modulation -- 5.3.2 Thermal radiation engineering -- 5.4 Summary and perspectives -- Acknowledgments -- References -- Chapter 6 Phonon mean free path spectroscopy: theory and experiments -- 6.1 Introduction -- 6.2 Principles of MFP spectroscopy -- 6.3 Theory -- 6.3.1 Nonlocal theory of heat conduction -- 6.3.2 Solving the inverse problem -- 6.4 Experiments -- 6.4.1 Size-dependent thermal conductivity measurements -- 6.4.2 TTG spectroscopy -- 6.4.3 Thermoreflectance and diffraction techniques -- 6.5 Summary -- References -- Chapter 7 Thermodynamics of anharmonic lattices from first principles -- 7.1 Introduction -- 7.1.1 Motivation.
7.1.2 Lattice dynamics theory and the self-consistent phonon idea -- 7.1.3 Implementation example of the variational approach -- 7.2 Overview: historical development -- 7.3 Modern interpretations and implementations -- 7.3.1 Selection and extraction of force constants -- 7.3.2 Sampling of the configuration space for effective theories at finite temperature -- 7.4 A recent extension to SCHA-4 -- 7.4.1 Formulation -- 7.4.2 Minimization equations with strain included -- 7.4.3 Application to a simple model -- 7.5 Conclusions -- Acknowledgement -- Appendix A Thermodynamic properties of harmonic oscillators -- Appendix B Normal modes and Gaussian averages -- Appendix C Formal SCHA equations -- References -- Chapter 8 Experimental approaches for probing heat transfer and energy conversion at the atomic and molecular scales -- 8.1 Introduction -- 8.2 Theoretical concepts -- 8.2.1 Energy transport in atomic-scale junctions -- 8.2.2 Heat dissipation and thermoelectric energy conversion in molecular junctions -- 8.3 Heat transfer and energy conversion at the atomic scale: experiments -- 8.3.1 Quantum heat transport in single-atom junctions -- 8.4 Heat dissipation in atomic- and molecular-scale junctions -- 8.5 Peltier cooling in molecular-scale junctions -- 8.6 Measurement of thermal conductance of single-molecule junctions -- 8.7 Concluding remarks and outlook -- References -- Chapter 9 Ultrafast thermal and magnetic characterization of materials enabled by the time-resolved magneto-optical Kerr effect -- 9.1 Introduction -- 9.1.1 Background and motivation -- 9.1.2 Ultrafast-laser-based metrology for transport studies -- 9.2 TR-MOKE measurement technique -- 9.2.1 The physical foundation -- 9.2.2 Optical setup of time-resolved magneto-optical Kerr effect -- 9.3 Thermal measurements -- 9.3.1 Temperature information from TR-MOKE signals.
9.3.2 Measurement process and data analysis of TR-MOKE -- 9.3.3 High-sensitivity thermal measurements enabled by TR-MOKE -- 9.4 Ultrafast magnetization dynamics -- 9.4.1 Magnetization information from TR-MOKE signals -- 9.4.2 Magnetic anisotropy and damping -- 9.5 Advanced capabilities for broader research directions -- 9.5.1 Propagating spin waves -- 9.5.2 Ultrafast energy carrier coupling -- 9.5.3 Straintronics (coupling between spin and strain) -- 9.5.4 Spin caloritronics -- 9.6 Summary and outlook -- Acknowledgements -- References -- Chapter 10 Investigation of nanoscale energy transport with time-resolved photoemission electron microscopy -- 10.1 Introduction -- 10.1.1 The era of semiconductor technologies -- 10.1.2 The importance of reaching the ultrafast frontier in semiconductor research -- 10.1.3 The grand unification of electron microscopy and femtosecond spectroscopy -- 10.2 Unlocking high spatial-temporal resolution in studies of ultrafast dynamics in semiconductors -- 10.2.1 Ultrafast transient absorption microscope (ultrafast TAM) -- 10.2.2 Ultrafast techniques utilizing electron microscopes -- 10.3 Studies of semiconductors utilizing TR-PEEM -- 10.4 Outlook and perspective of TR-PEEM technique -- 10.4.1 Ultrafast light sources with optimal repetition rate, peak power, pulse duration and energy bandwidth depending on application -- 10.4.2 Parallel data acquisition for multidimensional data -- 10.4.3 Resolving electron spin in TR-PEEM -- 10.5 Final remarks -- References -- Chapter 11 Exploring nanoscale heat transport via neutron scattering -- 11.1 Introduction -- 11.1.1 A short history -- 11.1.2 Neutron advantages -- 11.1.3 Neutron sources -- 11.1.4 Scattering theory -- 11.1.5 Neutron instruments -- 11.2 Inelastic neutron scattering and phonon transport -- 11.2.1 Thermal transport and measurable phonon properties.
11.2.2 Data reduction and analysis -- 11.2.3 Some examples -- 11.2.4 Summary -- References -- Chapter 12 Thermal transport measurements of nanostructures using suspended micro-devices -- 12.1 Introduction -- 12.2 Suspended micro-device platform -- 12.2.1 Basic principles and configuration -- 12.2.2 Sensitivity and uncertainties -- 12.2.3 Thermal contact resistance -- 12.3 Recent developments -- 12.3.1 The differential bridge method -- 12.3.2 Modulated heating -- 12.3.3 Background conductance -- 12.3.4 Characterization of heat loss from suspended beams -- 12.3.5 Electron-beam heating -- 12.3.6 Four-point thermal measurement -- 12.3.7 Integrated devices -- 12.4 Summary and outlook -- Acknowledgments -- References -- Chapter 13 Recent advances in structured surface enhanced condensation heat transfer -- 13.1 Introduction -- 13.2 Advancements in coating materials and the durability of coatings -- 13.2.1 Self-assembled monolayers -- 13.2.2 Polymers -- 13.2.3 Diamond-like carbon (DLC) -- 13.2.4 Rare earth oxides (REOs) -- 13.2.5 Hydrocarbon adsorption -- 13.2.6 Slippery omniphobic covalently attached liquids (SOCALs) -- 13.2.7 Degradation of coatings -- 13.3 Structured surfaces for low-surface-tension fluids -- 13.3.1 Re-entrant structured surfaces -- 13.3.2 Slippery liquid-infused porous surfaces (SLIPSs) and lubricant-infused surfaces (LISs) -- 13.3.3 LIS/SLIPS stability -- 13.3.4 Durability of LISs/SLIPs -- 13.4 Electric field enhanced (EFE) condensation -- 13.4.1 Electrohydrodynamic (EHD) enhancement of condensation heat transfer -- 13.4.2 Electric field induced condensation (EIC) -- 13.4.3 Electric field enhanced (EFE) jumping-droplet condensation -- 13.4.4 Potential research avenues for EFE condensation -- References -- Chapter 14 Thermionic energy conversion -- 14.1 Introduction -- 14.2 History of thermionic converters.
14.3 Theory of thermionic converters.
Record Nr. UNINA-9911009380303321
Liao Bolin  
Bristol : , : Institute of Physics Publishing, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Service 4.0 : Technology-Enabled Customer-Centric Supply Chains / / by Parminder Singh Kang, Xiaojia Wang, Joong Y. Son, Mohsin Jat
Service 4.0 : Technology-Enabled Customer-Centric Supply Chains / / by Parminder Singh Kang, Xiaojia Wang, Joong Y. Son, Mohsin Jat
Autore Kang Parminder Singh
Edizione [1st ed. 2024.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024
Descrizione fisica 1 online resource (90 pages)
Disciplina 658.7
Altri autori (Persone) WangXiaojia
SonJoong Y
JatMohsin
Collana SpringerBriefs in Service Science
Soggetto topico Business logistics
Production management
Business information services
Service industries
Application software
Supply Chain Management
Operations Management
IT in Business
Services
Computer and Information Systems Applications
ISBN 9783031638756
9783031638749
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction to Service 4.0 and Customer-Centric Supply Chains -- Role of Big Data in Customer-Centric Service-Based Supply Chains -- Analytics Models for Customer-Centric Service-Based Supply Chains -- Achieving Customer-Centricity Through Data Analytics – Case Study on Women’s Clothing E-commerce Reviews -- Future of Customer-Centric Service-Based Supply Chains.
Record Nr. UNINA-9910878987603321
Kang Parminder Singh  
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui