Databases Theory and Applications [[electronic resource] ] : 29th Australasian Database Conference, ADC 2018, Gold Coast, QLD, Australia, May 24-27, 2018, Proceedings / / edited by Junhu Wang, Gao Cong, Jinjun Chen, Jianzhong Qi |
Edizione | [1st ed. 2018.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018 |
Descrizione fisica | 1 online resource (XXV, 360 p. 149 illus.) |
Disciplina | 005.74 |
Collana | Information Systems and Applications, incl. Internet/Web, and HCI |
Soggetto topico |
Database management
Data mining Application software Artificial intelligence Computer communication systems Database Management Data Mining and Knowledge Discovery Information Systems Applications (incl. Internet) Artificial Intelligence Computer Appl. in Social and Behavioral Sciences Computer Communication Networks |
ISBN | 3-319-92013-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Database and Applications -- Data mining and Applications -- Theories and Methodologies. |
Record Nr. | UNISA-996465823403316 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Databases Theory and Applications : 29th Australasian Database Conference, ADC 2018, Gold Coast, QLD, Australia, May 24-27, 2018, Proceedings / / edited by Junhu Wang, Gao Cong, Jinjun Chen, Jianzhong Qi |
Edizione | [1st ed. 2018.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018 |
Descrizione fisica | 1 online resource (XXV, 360 p. 149 illus.) |
Disciplina | 005.74 |
Collana | Information Systems and Applications, incl. Internet/Web, and HCI |
Soggetto topico |
Database management
Data mining Application software Artificial intelligence Computer communication systems Database Management Data Mining and Knowledge Discovery Information Systems Applications (incl. Internet) Artificial Intelligence Computer Appl. in Social and Behavioral Sciences Computer Communication Networks |
ISBN | 3-319-92013-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Database and Applications -- Data mining and Applications -- Theories and Methodologies. |
Record Nr. | UNINA-9910349428103321 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Mössbauer Spectroscopy : Applications in Chemistry and Materials Science |
Autore | Garcia Yann |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2023 |
Descrizione fisica | 1 online resource (333 pages) |
Disciplina | 537.5352 |
Altri autori (Persone) |
WangJunhu
ZhangTao |
Soggetto topico |
Mössbauer spectroscopy
Materials science |
ISBN |
9783527824953
3527824952 9783527824946 3527824944 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Application of Mössbauer Spectroscopy to Energy Materials -- 1.1 Introduction -- 1.2 Mössbauer Spectroscopy for Li‐ion and Na‐ion Batteries -- 1.2.1 Characterization of Electrode Materials and Electrochemical Reactions -- 1.2.2 Tin‐Based Negative Electrode Materials for Li‐ion Batteries -- 1.2.2.1 Electrochemical Reactions of Lithium with Tin -- 1.2.2.2 Tin Oxides -- 1.2.2.3 Tin Borophosphates -- 1.2.2.4 Tin‐Based Intermetallics -- 1.2.3 Iron‐Based Electrode Materials -- 1.2.3.1 LiFePO4 as Positive Electrode Material for Li‐ion Batteries -- 1.2.3.2 Fe1.19PO4(OH)0.57(H2O)0.43/C as Positive Electrode Material for Li‐ion Batteries -- 1.2.3.3 Na1.5Fe0.5Ti1.5(PO4)3/C as Electrode Material for Na‐ion Batteries -- 1.3 Mössbauer Spectroscopy of Tin‐Based Catalysts -- 1.3.1 Reforming Catalysis -- 1.3.2 Redox Properties of Pt‐Sn Based Catalysts -- 1.3.3 Trimetallic Pt‐Sn‐In Based Catalysts -- 1.4 Conclusion -- Acknowledgments -- References -- Chapter 2 Mössbauer Spectral Studies of Iron Phosphate Containing Minerals and Compounds -- 2.1 Introduction -- 2.2 Thermodynamic Properties of Iron Phosphate Containing Compounds -- 2.3 Room Temperature Mössbauer Spectra of Iron Phosphate Containing Minerals -- 2.4 Analysis of Magnetically Ordered Mössbauer Spectra -- 2.5 Structural and Thermodynamic Properties of the Polymorphs of FePO4 -- 2.5.1 Polymorphs of FePO4 -- 2.6 Mössbauer Spectra of α‐FePO4 -- 2.7 Magnetic Structure of α‐FePO4, Obtained by Mössbauer Spectroscopy -- 2.7.1 Magnetic Structure of α‐FePO4 -- 2.8 Temperature Dependence of the α‐FePO4 Structure Tilt Angle -- 2.9 Mössbauer Spectral Studies on Metastable Polymorphs of FePO4 -- 2.9.1 Crystallographic Structures of Two Polymorphs of FePO4·2H2O.
2.9.2 Preparation and Crystallographic Structures of the Two Polymorphs, γ‐FePO4 and ζ‐FePO4 -- 2.9.3 Mössbauer Spectral Studies of FePO4 Metastable Polymorphs -- 2.9.4 Preparation and Mössbauer Spectra of Synthetic Heterosite, (Fe,Mn)PO4 -- 2.9.5 Fits of the Magnetic Mössbauer Spectra of η‐Fe0.9Mn0.1PO4 -- 2.10 Mössbauer Spectral Studies of Various Iron Phosphate Compounds -- 2.10.1 Mössbauer Spectral Properties of α‐Fe2(PO4)O -- 2.10.2 Mössbauer Spectral Properties of Fe3(PO4)O3 -- 2.10.3 Preparation and Structural Properties of Fe9(PO4)O8 -- 2.10.4 Mössbauer Spectral Properties of Fe9(PO4)O8 -- Acknowledgments -- References and Notes -- Chapter 3 Mössbauer Spectroscopic Investigation of Fe‐Based Silicides -- 3.1 Introduction -- 3.2 Mössbauer Spectroscopic Investigation of Iron Silicides Prepared By Mechanical Alloying and Heat Treatment -- 3.3 Mössbauer Spectra of Iron Silicide on Silica Prepared by Pyrolysis of Ferrocene‐Polydimethylsilane Composites -- 3.4 Synthesis and Mössbauer Spectra of Iron Silicides by Temperature‐Programmed Silicification -- 3.5 Mössbauer Spectroscopic Investigation of Doped Iron Silicides -- 3.6 Conclusion and Perspective -- References -- Chapter 4 Mössbauer Spectroscopy of Catalysts -- 4.1 Introduction -- 4.2 Principles of the Mössbauer Effect and Outlook of Its Application for Catalyst Studies -- 4.2.1 Brief Overview of the Basics of Mössbauer Spectroscopy -- 4.2.2 Mössbauer Spectroscopy from the Point of View of Catalyst Studies - Particular Features -- 4.2.3 The Probability of the Mössbauer Effect - f‐Factor and Size Effects -- 4.2.4 Variants of the Technique -- 4.2.4.1 57Co Emission Spectroscopy -- 4.2.4.2 Synchrotron‐Based NFS (Nuclear Forward Scattering) -- 4.2.4.3 Conversion Electron Mössbauer Spectroscopy -- 4.2.5 Technical Implementations - Experimental Conditions -- 4.3 Heterogeneous Catalysts. 4.3.1 Sites on Supported Particles with Different Participation in Catalytic Processes -- 4.3.2 Collective Effects in Particles (Magnetism) -- 4.3.3 Case Studies -- 4.3.3.1 Metals and Alloys -- 4.3.3.2 Oxide Catalysts -- 4.3.3.3 Catalysts with Fe-N, Fe-C, and Fe-N-C Centers -- 4.4 Biocatalysts - Enzymes -- 4.5 Homogeneous Catalysts - Frozen Solutions -- 4.5.1 Studies on Reaction Intermediates - Time‐Resolved Freeze‐Quenched Spectra -- 4.6 Conclusions -- Acknowledgment -- References -- Chapter 5 Application of Mössbauer Spectroscopy in Studying Catalysts for CO Oxidation and Preferential Oxidation of CO in H2 -- 5.1 Introduction -- 5.2 Application of Mössbauer Spectroscopy in CO Oxidation -- 5.2.1 57Fe Mössbauer Spectroscopy -- 5.2.2 119Sn Mössbauer Spectroscopy -- 5.2.3 197Au Mössbauer Spectroscopy -- 5.2.4 193Ir Mössbauer spectroscopy -- 5.3 Application of Mössbauer Spectroscopy in PROX -- 5.3.1 PtFe‐Containing Catalysts -- 5.3.2 Au‐Based Catalysts -- 5.3.3 IrFe‐Containing Catalysts -- 5.3.3.1 Porous Carbon Supported IrFe Catalysts -- 5.3.3.2 SiO2 and Al2O3 Supported IrFe Catalysts -- 5.3.4 CuO/CeO2 with Fe2O3 Additive -- 5.4 Concluding Remarks -- Acknowledgments -- References -- Chapter 6 Application of 57Fe Mössbauer Spectroscopy in Studying Fe-N-C Catalysts for Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cells -- 6.1 Introduction -- 6.2 Advanced 57Fe Mössbauer Spectroscopy Technique -- 6.2.1 Room Temperature 57Fe Mössbauer Spectroscopy -- 6.2.2 Low Temperature and Computational 57Fe Mössbauer Spectroscopy -- 6.2.3 In Situ Electrochemical 57Fe Mössbauer Spectroscopy -- 6.3 Characterization of Fe-N-C Using 57Fe Mössbauer Spectroscopy -- 6.3.1 Identification of Active Sites -- 6.3.2 Investigation of Degradation Mechanism -- 6.3.3 Optimization for Synthesis of Fe-N-C -- 6.3.3.1 Precursor Composition -- 6.3.3.2 Heat Treatment. 6.4 Summary and Perspective -- Acknowledgments -- References -- Chapter 7 197Au Mössbauer Spectroscopy of Thiolate‐protected Gold Clusters -- 7.1 Introduction -- 7.2 Synthesis of Thiolate Protected Gold Clusters -- 7.3 197Au Mössbauer Spectroscopy of Gold Nano‐clusters -- 7.3.1 Experimental Procedure of 197Au Mössbauer Spectroscopy -- 7.3.2 197Au Mössbauer Spectra of Aun(SG)m (n & -- equals -- 10∼55) -- 7.3.3 Molecular Structure and 197Au Mössbauer Spectra of Au10(SG)10 -- 7.3.4 Molecular Structure and 197Au Mössbauer Spectra of Au25(SG)18 -- 7.3.5 Structural Evolution of Aun(SG)m (n & -- equals -- 10∼55) Based on 197Au Mössbauer Spectroscopy -- 7.3.6 197Au Mössbauer Spectra of Au24Pd1(SC12H25)18 -- 7.3.7 197Au Mössbauer Spectra of Aun(SC12H25)m -- 7.4 Conclusion -- Acknowledgments -- References -- Chapter 8 197Au Mössbauer Spectroscopy of Gold Mixed‐Valence Complexes, Cs2[AuIX2][AuIIIY4](X, Y & -- equals -- Cl, Br, I) and [NH3(CH2)nNH3]2[(AuII2)(AuIIII4) (I3)2] (n & -- equals -- 7, 8) -- 8.1 Introduction -- 8.2 Experimental Procedure -- 8.2.1 Synthesis and Characterization -- 8.2.1.1 Cs2[AuIX2][AuIIIY4] (X, Y & -- equals -- Cl, Br, I) -- 8.2.1.2 [NH3(CH2)nNH3]2[(AuII2)(AuIIII4)(I3)2] (n & -- equals -- 7, 8) -- 8.2.2 197Au Mössbauer Spectroscopy -- 8.3 Crystal Structure of Cs2[AuIX2][AuIIIY4] (X, Y & -- equals -- Cl, Br, I) -- 8.4 Chemical Bond of Au−X in [AuIX2]− and [AuIIIX4]− -- 8.5 Mössbauer Parameters of 197Au in [AuIX2]− and [AuIIIX4]− -- 8.5.1 Mössbauer Parameters of 197Au in (C4H9)4N[AuIX2] and (C4H9)4N[AuIIIX4] -- 8.5.1.1 Isomer Shift -- 8.5.1.2 Quadrupole Splitting -- 8.5.2 Mössbauer Parameters of 197Au in Cs2[AuIX2][AuIIIX4] (X & -- equals -- Cl, Br, I) -- 8.5.2.1 Isomer Shift -- 8.5.2.2 Quadrupole Splitting -- 8.5.2.3 Analysis of 197Au Mössbauer Parameters for Cs2[AuIX2][AuIIIX4]. 8.6 Charge Transfer Interaction in Cs2[AuIX2][AuIIIX4] (X & -- equals -- Cl, Br, I) -- 8.7 197Au Mössbauer Spectra of Cs2[AuIX2][AuIIIY4] (X, Y & -- equals -- Cl, Br, I) -- 8.7.1 Isomer Shift of AuI in Cs2[AuIX2][AuIIIY4] -- 8.7.2 Isomer Shift of AuIII in Cs2[AuIX2][AuIIIY4] -- 8.7.3 Quadrupole Splitting of AuI in Cs2[AuIX2][AuIIIY4] -- 8.7.4 Quadrupole Splitting of AuIII in Cs2[AuIX2][AuIIIY4] -- 8.8 Single Crystal 197Au Mössbauer Spectra of Cs2[AuII2][AuIIII4] -- 8.8.1 Comparison of 197Au Mössbauer Spectra Between Single Crystal and Powder Crystal -- 8.8.2 Sign of EFG for AuI in [AuII2]− and AuIII in [AuIIIX4]− -- 8.9 197Au Mössbauer Spectra of Cs2[AuIX2][AuIIIX4] (X & -- equals -- Cl, I) Under High Pressures -- 8.9.1 Phase Diagram of Cs2[AuIX2][AuIIIX4] (X & -- equals -- Cl, Br, I) -- 8.9.2 Origin of Metallic Mixed‐Valence State in Cs2[AuICl2][AuIIICl4] -- 8.9.3 Au Valence Transition in Cs2[AuII2][AuIIII4] -- 8.10 197Au Mössbauer Spectra of [NH3(CH2)nNH3]2[(AuII2)(AuIIII4)(I3)2] (n & -- equals -- 7, 8) -- 8.11 Conclusion -- Acknowledgments -- References -- Chapter 9 Temperature‐ and Photo‐Induced Spin‐Crossover in Molecule‐Based Magnets -- 9.1 Introduction -- 9.2 Spin‐Crossover Phenomena in Cesium Iron Hexacyanidochromate Prussian Blue Analog -- 9.3 Light‐Induced Spin‐Crossover Magnet in Iron Octacyanidoniobate Bimetal Assembly -- 9.4 Chiral Photomagnetism and Light‐Controllable Second Harmonic Light in Iron Octacyanidoniobate Bimetal Assembly -- 9.5 Conclusion and Perspective -- References -- Chapter 10 Developing a Methodology to Obtain New Photoswitchable Fe(II) Spin Crossover Complexes -- 10.1 Introduction and Context -- 10.2 Introduction to a New Photo‐responsive Anion: psca -- 10.3 Combining Fe(II) and psca Together in a Single Compound -- 10.4 Fe(II) Mononuclear Complexes with DMPP and psca Ligands. 10.5 1D Fe(II) Coordination Polymer with psca as Non‐Coordinated Anions. |
Record Nr. | UNINA-9910877596003321 |
Garcia Yann | ||
Newark : , : John Wiley & Sons, Incorporated, , 2023 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|