Experimental micro/nanoscale thermal transport [[electronic resource] /] / Xinwei Wang
| Experimental micro/nanoscale thermal transport [[electronic resource] /] / Xinwei Wang |
| Autore | Wang Xinwei <1948-> |
| Pubbl/distr/stampa | Hoboken, New Jersey, : Wiley, 2012 |
| Descrizione fisica | 1 online resource (280 p.) |
| Disciplina | 620.1/1596 |
| Soggetto topico |
Nanostructured materials - Thermal properties
Heat - Transmission |
| ISBN |
1-283-94122-8
1-118-31019-5 1-118-31023-3 1-118-31024-1 |
| Classificazione | TEC027000 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
EXPERIMENTAL MICRO/NANOSCALE THERMAL TRANSPORT; CONTENTS; PREFACE; 1 INTRODUCTION; 1.1 Unique Feature of Thermal Transport in Nanoscale and Nanostructured Materials; 1.1.1 Thermal Transport Constrained by Material Size; 1.1.2 Thermal Transport Constrained by Time; 1.1.3 Thermal Transport Constrained by the Size of Physical Process; 1.2 Molecular Dynamics Simulation of Thermal Transport at Micro/Nanoscales; 1.2.1 Equilibrium MD Prediction of Thermal Conductivity; 1.2.2 Nonequilibrium MD Study of Thermal Transport; 1.2.3 MD Study of Thermal Transport Constrained by Time
1.3 Boltzmann Transportation Equation for Thermal Transport Study1.4 Direct Energy Carrier Relaxation Tracking (DECRT); 1.5 Challenges in Characterizing Thermal Transport at Micro/Nanoscales; References; 2 THERMAL CHARACTERIZATION IN FREQUENCY DOMAIN; 2.1 Frequency Domain Photoacoustic (PA) Technique; 2.1.1 Physical Model; 2.1.2 Experimental Details; 2.1.3 PA Measurement of Films and Bulk Materials; 2.1.4 Uncertainty of the PA Measurement; 2.2 Frequency Domain Photothermal Radiation (PTR) Technique; 2.2.1 Experimental Details of the PTR Technique 2.2.2 PTR Measurement of Micrometer-Thick Films2.2.3 PTR with Internal Heating of Desired Locations; 2.3 Three-Omega Technique; 2.3.1 Physical Model of the 3ù Technique for One-Dimensional Structures; 2.3.2 Experimental Details; 2.3.3 Calibration of the Experiment; 2.3.4 Measurement of Micrometer-Thick Wires; 2.3.5 Effect of Radiation on Measurement Result; 2.4 Optical Heating Electrical Thermal Sensing (OHETS) Technique; 2.4.1 Experimental Principle and Physical Model; 2.4.2 Effect of Nonuniform Distribution of Laser Beam; 2.4.3 Experimental Details and Calibration 2.4.4 Measurement of Electrically Conductive Wires2.4.5 Measurement of Nonconductive Wires; 2.4.6 Effect of Au Coating on Measurement; 2.4.7 Temperature Rise in the OHETS Experiment; 2.5 Comparison Among the Techniques; References; 3 TRANSIENT TECHNOLOGIES IN THE TIME DOMAIN; 3.1 Transient Photo-Electro-Thermal (TPET) Technique; 3.1.1 Experimental Principles; 3.1.2 Physical Model Development; 3.1.3 Effect of Nonuniform Distribution and Finite Rising Time of the Laser Beam; 3.1.4 Experimental Setup; 3.1.5 Technique Validation; 3.1.6 Thermal Characterization of SWCNT Bundles and Cloth Fibers 3.2 Transient Electrothermal (TET) Technique3.2.1 Physical Principles of the TET Technique; 3.2.2 Methods for Data Analysis to Determine the Thermal Diffusivity; 3.2.3 Effect of Nonconstant Electrical Heating; 3.2.4 Experimental Details; 3.2.5 Technique Validation; 3.2.6 Measurement of SWCNT Bundles; 3.2.7 Measurement of Polyester Fibers; 3.2.8 Measurement of Micro/Submicroscale Polyacrylonitrile Wires; 3.3 Pulsed Laser-Assisted Thermal Relaxation Technique; 3.3.1 Experimental Principles; 3.3.2 Physical Model for the PLTR Technique; 3.3.3 Methods to Determine the Thermal Diffusivity 3.3.4 Experimental Setup and Technique Validation |
| Record Nr. | UNINA-9910130601103321 |
Wang Xinwei <1948->
|
||
| Hoboken, New Jersey, : Wiley, 2012 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Experimental micro/nanoscale thermal transport / / Xinwei Wang
| Experimental micro/nanoscale thermal transport / / Xinwei Wang |
| Autore | Wang Xinwei <1948-> |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Hoboken, New Jersey, : Wiley, 2012 |
| Descrizione fisica | 1 online resource (280 p.) |
| Disciplina | 620.1/1596 |
| Soggetto topico |
Nanostructured materials - Thermal properties
Heat - Transmission |
| ISBN |
9781283941228
1283941228 9781118310199 1118310195 9781118310236 1118310233 9781118310243 1118310241 |
| Classificazione | TEC027000 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
EXPERIMENTAL MICRO/NANOSCALE THERMAL TRANSPORT; CONTENTS; PREFACE; 1 INTRODUCTION; 1.1 Unique Feature of Thermal Transport in Nanoscale and Nanostructured Materials; 1.1.1 Thermal Transport Constrained by Material Size; 1.1.2 Thermal Transport Constrained by Time; 1.1.3 Thermal Transport Constrained by the Size of Physical Process; 1.2 Molecular Dynamics Simulation of Thermal Transport at Micro/Nanoscales; 1.2.1 Equilibrium MD Prediction of Thermal Conductivity; 1.2.2 Nonequilibrium MD Study of Thermal Transport; 1.2.3 MD Study of Thermal Transport Constrained by Time
1.3 Boltzmann Transportation Equation for Thermal Transport Study1.4 Direct Energy Carrier Relaxation Tracking (DECRT); 1.5 Challenges in Characterizing Thermal Transport at Micro/Nanoscales; References; 2 THERMAL CHARACTERIZATION IN FREQUENCY DOMAIN; 2.1 Frequency Domain Photoacoustic (PA) Technique; 2.1.1 Physical Model; 2.1.2 Experimental Details; 2.1.3 PA Measurement of Films and Bulk Materials; 2.1.4 Uncertainty of the PA Measurement; 2.2 Frequency Domain Photothermal Radiation (PTR) Technique; 2.2.1 Experimental Details of the PTR Technique 2.2.2 PTR Measurement of Micrometer-Thick Films2.2.3 PTR with Internal Heating of Desired Locations; 2.3 Three-Omega Technique; 2.3.1 Physical Model of the 3ù Technique for One-Dimensional Structures; 2.3.2 Experimental Details; 2.3.3 Calibration of the Experiment; 2.3.4 Measurement of Micrometer-Thick Wires; 2.3.5 Effect of Radiation on Measurement Result; 2.4 Optical Heating Electrical Thermal Sensing (OHETS) Technique; 2.4.1 Experimental Principle and Physical Model; 2.4.2 Effect of Nonuniform Distribution of Laser Beam; 2.4.3 Experimental Details and Calibration 2.4.4 Measurement of Electrically Conductive Wires2.4.5 Measurement of Nonconductive Wires; 2.4.6 Effect of Au Coating on Measurement; 2.4.7 Temperature Rise in the OHETS Experiment; 2.5 Comparison Among the Techniques; References; 3 TRANSIENT TECHNOLOGIES IN THE TIME DOMAIN; 3.1 Transient Photo-Electro-Thermal (TPET) Technique; 3.1.1 Experimental Principles; 3.1.2 Physical Model Development; 3.1.3 Effect of Nonuniform Distribution and Finite Rising Time of the Laser Beam; 3.1.4 Experimental Setup; 3.1.5 Technique Validation; 3.1.6 Thermal Characterization of SWCNT Bundles and Cloth Fibers 3.2 Transient Electrothermal (TET) Technique3.2.1 Physical Principles of the TET Technique; 3.2.2 Methods for Data Analysis to Determine the Thermal Diffusivity; 3.2.3 Effect of Nonconstant Electrical Heating; 3.2.4 Experimental Details; 3.2.5 Technique Validation; 3.2.6 Measurement of SWCNT Bundles; 3.2.7 Measurement of Polyester Fibers; 3.2.8 Measurement of Micro/Submicroscale Polyacrylonitrile Wires; 3.3 Pulsed Laser-Assisted Thermal Relaxation Technique; 3.3.1 Experimental Principles; 3.3.2 Physical Model for the PLTR Technique; 3.3.3 Methods to Determine the Thermal Diffusivity 3.3.4 Experimental Setup and Technique Validation |
| Record Nr. | UNINA-9910821649303321 |
Wang Xinwei <1948->
|
||
| Hoboken, New Jersey, : Wiley, 2012 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||