top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Aqueous Zinc Ion Batteries : Fundamentals, Materials, and Design
Aqueous Zinc Ion Batteries : Fundamentals, Materials, and Design
Autore Wang Haiyan
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2024
Descrizione fisica 1 online resource (329 pages)
Disciplina 621.312424
Altri autori (Persone) ZhangQi
LiYixin
TangYougen
Soggetto topico Zinc ion batteries
Energy storage
ISBN 9783527835065
3527835067
9783527835041
3527835040
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Introduction for Aqueous Zinc‐Ion Batteries -- 1.1 History of Aqueous Zinc‐Ion Batteries -- 1.2 Main Challenges for Aqueous Zinc‐Ion Batteries -- 1.2.1 Cathode -- 1.2.2 Anode -- 1.2.3 Separator -- 1.2.4 Electrolyte -- 1.2.5 Full Battery Assembly and Practical Application -- References -- Chapter 2 Theoretical Fundamentals of Aqueous Zinc‐Ion Batteries -- 2.1 Electrochemical Reaction Mechanism of Cathodes -- 2.1.1 Zn2+‐Insertion/Extraction Mechanism -- 2.1.2 Co‐Insertion/Extraction Mechanism -- 2.1.2.1 H+ and Zn2+ Insertion/Extraction Mechanism -- 2.1.2.2 Zn2+/H2O Co‐Insertion/Extraction Mechanism -- 2.1.2.3 Li+‐ and Zn2+‐Insertion/Extraction Mechanism -- 2.1.3 Chemical Conversion of Cathodes -- 2.2 The Mechanism of Zinc Metal Anode -- 2.2.1 Fundamentals of Thermodynamics -- 2.2.2 Crystal Nucleation and Growth of Zinc Electrodeposition -- 2.2.2.1 Nucleation -- 2.2.2.2 Crystal Growth of Zinc on Existing Crystal Facets/Nuclei -- References -- Chapter 3 Cathode Materials for Aqueous Zinc‐ion Batteries -- 3.1 Manganese‐Based Cathode Materials -- 3.1.1 Introduction to Different Mn‐Based Materials -- 3.1.1.1 Tunnel‐Type Structure -- 3.1.1.2 Layered (δ‐) MnO2 -- 3.1.1.3 Spinel (λ‐) MnO2 -- 3.1.1.4 Other Manganese Oxides -- 3.1.2 Issues -- 3.1.2.1 Mn2+ Dissolution -- 3.1.2.2 Structure Instability -- 3.1.2.3 Poor Electrical Conductivity -- 3.1.3 Strategies -- 3.1.3.1 Structure Design -- 3.1.3.2 Compositing with Conductive Materials -- 3.1.3.3 Pre‐Intercalation -- 3.1.3.4 Defect Engineering -- 3.1.3.5 Electrochemical Activation -- 3.2 Vanadium‐Based Cathode Materials -- 3.2.1 Introduction to Different Vanadium‐Based Materials -- 3.2.1.1 Layered Structure -- 3.2.1.2 Tunnel‐Based Structure -- 3.2.1.3 Spinel‐Type Structures -- 3.2.1.4 NASICON‐Type Structure.
3.2.1.5 Rock Salt‐Type Structures -- 3.2.2 Issues -- 3.2.2.1 Effect of Electrostatic Interactions -- 3.2.2.2 Vanadium Dissolution -- 3.2.3 Modified Strategy -- 3.2.3.1 Defect Engineering -- 3.2.3.2 Interlayer Intercalation -- 3.2.3.3 Morphology Optimization -- 3.2.3.4 Composite Material -- 3.2.3.5 Electrochemical Activation -- 3.3 Prussian Blue Analogs -- 3.3.1 Introduction to Prussian Blue Analogs -- 3.3.1.1 Structure and Categorization -- 3.3.1.2 Synthesis Method -- 3.3.2 Strategies -- 3.4 Organic Materials -- 3.4.1 Different Types of Organic Cathodes -- 3.4.1.1 n‐Type -- 3.4.1.2 p‐Type -- 3.4.1.3 Bipolar‐Type -- 3.4.2 Main Challenges Faced by Organic Cathode Materials -- 3.4.2.1 Poor Electrical Conductivity -- 3.4.2.2 Low Energy Density -- 3.4.2.3 Poor Cycling Stability -- 3.4.3 Design Strategies for Advanced Organic Cathode Materials -- 3.4.3.1 Enhancing Electrical Conductivity -- 3.4.3.2 Increasing Energy Density -- 3.4.3.3 Improving Cycling Stability -- References -- Chapter 4 Anode Materials for Aqueous Zinc‐Ion Batteries -- 4.1 Structural Design -- 4.1.1 3D Zinc Anodes -- 4.1.2 Zinc Alloy Anodes -- 4.1.3 Zinc‐Plated Hierarchical Anodes -- 4.1.3.1 3D Carbon‐Based Hosts -- 4.1.3.2 3D Metallic Host -- 4.1.3.3 MOF‐Based Host -- 4.2 Surface Modifications -- 4.2.1 Zinc-Electrolyte Interface -- 4.2.1.1 Design of High‐Performance Surface -- 4.2.1.2 Electrochemical Protocol to Uniformize Surface -- 4.2.1.3 Physically and Chemically Polished Surface -- 4.2.1.4 The Textured Surface -- 4.2.1.5 The Plasma‐Treated Surface -- 4.2.1.6 Introduction of Interface Layer -- 4.2.1.7 Insulating Layer -- 4.2.1.8 Electron‐Oriented Layer -- 4.2.1.9 Ion‐Oriented Layer -- 4.2.1.10 Complex Layer -- 4.2.2 Host-Zinc Interface -- 4.2.2.1 Using Uniform Conductive Host -- 4.2.2.2 Building Zincophilic Sites -- 4.2.2.3 Introducing Hydrogen Evolution Barrier Layer.
4.2.2.4 Regulating Interface Orientation -- References -- Chapter 5 Electrolytes for Aqueous Zinc‐Ion Batteries -- 5.1 Development of Electrolytes for Aqueous Zinc‐Ion Batteries -- 5.1.1 Functional Electrolyte Additives -- 5.1.2 High‐Concentration Electrolyte (Water in Salt) -- 5.1.3 Hydrogel Electrolyte -- 5.1.4 Ionic Liquids -- 5.1.5 Deep Eutectic Solvents -- 5.2 Issues and Solutions of Electrolytes for Aqueous Zinc‐Ion Batteries -- 5.2.1 Cathode Dissolution -- 5.2.2 Water Decomposition -- 5.2.3 Corrosion and Passivation -- 5.2.4 Dendrite Growth -- 5.2.5 Interaction Among HER, Corrosion, and Dendrite Growth -- References -- Chapter 6 Separators for Aqueous Zinc‐Ion Batteries -- 6.1 Performance Requirements and Properties of Separator -- 6.1.1 Performance Requirements of Separator -- 6.1.1.1 Chemical and Electrochemical Stability -- 6.1.1.2 Wettability, Electrolyte Uptake, and Electrolyte Retention -- 6.1.1.3 Mechanical Strength -- 6.1.2 Properties Requirements of Separator -- 6.1.2.1 Pore Size -- 6.1.2.2 Pore Distribution -- 6.1.2.3 Porosity -- 6.1.2.4 Thickness -- 6.2 Commercial Separators -- 6.2.1 Polyolefin Separator -- 6.2.2 Glass Fiber Separator -- 6.2.3 Cellulose‐Based Separator -- 6.2.4 Nafion Separator -- 6.3 Constructing High‐Performance Separators -- 6.3.1 Promoting Homogeneous Ion Distribution -- 6.3.1.1 Constructing Ordered Pore Structure -- 6.3.1.2 Introducing Conductive Layer -- 6.3.2 Accelerating Zn2+ Transport -- 6.3.2.1 Zincophilicity -- 6.3.2.2 Electrostatic Interaction -- 6.3.2.3 Maxwell-Wagner Polarization -- 6.3.3 Manipulating Zn Growth Direction -- 6.3.3.1 Manipulating Crystallographic Orientation -- 6.3.3.2 Manipulating Lateral Growth -- 6.4 Separator‐Free AZIBs -- 6.4.1 Gel Electrolyte -- 6.4.2 Solid Electrolyte -- References -- Chapter 7 Development of Full Zinc‐Ion Batteries -- 7.1 Types of AZIBs.
7.1.1 Initial Test Molds -- 7.1.2 Coin Cell -- 7.1.3 Soft‐Packed Cell -- 7.1.4 Cylinder Cell -- 7.1.5 Prismatic Cell -- 7.2 Performance Parameters of AZIB -- 7.2.1 Electromotive Force (EMF) -- 7.2.2 Battery Internal Resistance (Ri) -- 7.2.3 Open‐Circuit Voltage (VOC) and Working Voltage (V) -- 7.2.4 Capacity (C) and Theoretical Capacity (C0) -- 7.2.5 Depth of Discharge (DOD) -- 7.2.6 Energy Density -- 7.2.7 Power Density -- 7.3 Assembly Process of Full Battery -- 7.3.1 Cathode Flake -- 7.3.1.1 Coating -- 7.3.1.2 Rolling -- 7.3.1.3 In Situ Synthesis -- 7.3.1.4 Slurry Method -- 7.3.2 Anode Flake -- 7.3.2.1 Zinc Powder -- 7.3.2.2 Zinc Plate -- 7.3.2.3 Galvanized Material -- 7.3.2.4 Zinc Alloy -- 7.3.2.5 3D Zinc Anode -- 7.3.3 Electrolyte -- 7.3.3.1 Aqueous Electrolyte -- 7.3.3.2 Gel Electrolyte -- 7.3.4 Assembly Process of Full Battery -- 7.3.4.1 Coin Cell -- 7.3.4.2 Soft‐Packed Cell -- 7.4 Aqueous Zinc‐Ion Battery Manufacturers -- 7.5 Summary and Outlook -- References -- Chapter 8 Advanced Characterization Tools and Theoretical Research Methods -- 8.1 Characterization Techniques -- 8.1.1 Apparent and Morphological Observations -- 8.1.1.1 Electron Microscope (EM) -- 8.1.1.2 Laser Scanning Confocal Microscope (LSCM) -- 8.1.1.3 Other Apparent and Morphological Techniques -- 8.1.2 Structural and Spectroscopic Techniques -- 8.1.2.1 X‐Ray Diffraction -- 8.1.2.2 Raman Spectroscopy -- 8.1.2.3 Infrared (IR) Spectroscopy -- 8.1.2.4 X‐Ray Photoelectron Spectroscopy (XPS) -- 8.1.2.5 Nuclear Magnetic Resonance (NMR) Spectroscopy -- 8.1.2.6 X‐Ray Absorption Spectroscopy -- 8.1.2.7 Other Structural and Spectroscopic Techniques -- 8.2 In Situ Characterization Techniques -- 8.2.1 In Situ FTIR -- 8.2.2 In Situ XRD -- 8.2.3 In Situ Raman -- 8.2.4 In Situ AFM -- 8.2.5 In Situ Optical Microscopy (OM) -- 8.3 Theoretical Research Methods -- 8.3.1 Simulations in AZIBs.
8.3.1.1 Simulations of Electric Field Distribution -- 8.3.1.2 Simulations of Zn2+ Concentration Field Distribution -- 8.3.2 Theoretical Calculation in AZIBs -- 8.3.2.1 Calculations of Adsorption Energy for Evaluating Zincophilicity -- 8.3.2.2 Calculations for Structural Evolution With Zn2+ Insertion/Extraction -- 8.3.2.3 Calculations of Zn2+ Diffusion Kinetics -- 8.4 Conclusion -- References -- Chapter 9 Conclusion and Future Perspectives -- Index -- EULA.
Record Nr. UNINA-9911019470603321
Wang Haiyan  
Newark : , : John Wiley & Sons, Incorporated, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Modeling Information Diffusion in Online Social Networks with Partial Differential Equations [[electronic resource] /] / by Haiyan Wang, Feng Wang, Kuai Xu
Modeling Information Diffusion in Online Social Networks with Partial Differential Equations [[electronic resource] /] / by Haiyan Wang, Feng Wang, Kuai Xu
Autore Wang Haiyan
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (XIII, 144 p. 39 illus., 29 illus. in color.)
Disciplina 515.353
Collana Surveys and Tutorials in the Applied Mathematical Sciences
Soggetto topico Partial differential equations
Application software
Communication
Partial Differential Equations
Computer Appl. in Social and Behavioral Sciences
Communication Studies
ISBN 3-030-38852-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Ordinary Differential Equation Models on Social Networks -- Spatio-temporal Patterns of Information Diffusion -- Clustering of Online Social Network Graphs -- Partial Differential Equation Models -- Modeling Complex Interactions -- Mathematical Analysis -- Applications.
Record Nr. UNISA-996418276203316
Wang Haiyan  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Modeling Information Diffusion in Online Social Networks with Partial Differential Equations / / by Haiyan Wang, Feng Wang, Kuai Xu
Modeling Information Diffusion in Online Social Networks with Partial Differential Equations / / by Haiyan Wang, Feng Wang, Kuai Xu
Autore Wang Haiyan
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (XIII, 144 p. 39 illus., 29 illus. in color.)
Disciplina 515.353
Collana Surveys and Tutorials in the Applied Mathematical Sciences
Soggetto topico Differential equations, Partial
Application software
Communication
Partial Differential Equations
Computer Appl. in Social and Behavioral Sciences
Communication Studies
ISBN 3-030-38852-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Ordinary Differential Equation Models on Social Networks -- Spatio-temporal Patterns of Information Diffusion -- Clustering of Online Social Network Graphs -- Partial Differential Equation Models -- Modeling Complex Interactions -- Mathematical Analysis -- Applications.
Record Nr. UNINA-9910483165503321
Wang Haiyan  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui