Vai al contenuto principale della pagina

Sublinear Algorithms for Big Data Applications / / by Dan Wang, Zhu Han



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Wang Dan Visualizza persona
Titolo: Sublinear Algorithms for Big Data Applications / / by Dan Wang, Zhu Han Visualizza cluster
Pubblicazione: Cham : , : Springer International Publishing : , : Imprint : Springer, , 2015
Edizione: 1st ed. 2015.
Descrizione fisica: 1 online resource (94 p.)
Disciplina: 005.1
Soggetto topico: Database management
Computer networks
Electrical engineering
Database Management
Computer Communication Networks
Communications Engineering, Networks
Persona (resp. second.): HanZhu
Note generali: Description based upon print version of record.
Nota di bibliografia: Includes bibliographical references at the end of each chapters.
Nota di contenuto: Introduction -- Basics for Sublinear Algorithms -- Applications for Wireless Sensor Networks -- Applications for Big Data Processing -- Applications for a Smart Grid -- Concluding Remarks.
Sommario/riassunto: The brief focuses on applying sublinear algorithms to manage critical big data challenges. The text offers an essential introduction to sublinear algorithms, explaining why they are vital to large scale data systems. It also demonstrates how to apply sublinear algorithms to three familiar big data applications: wireless sensor networks, big data processing in Map Reduce and smart grids. These applications present common experiences, bridging the theoretical advances of sublinear algorithms and the application domain. Sublinear Algorithms for Big Data Applications is suitable for researchers, engineers and graduate students in the computer science, communications and signal processing communities.
Titolo autorizzato: Sublinear Algorithms for Big Data Applications  Visualizza cluster
ISBN: 3-319-20448-3
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910299254103321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: SpringerBriefs in Computer Science, . 2191-5768