Vai al contenuto principale della pagina

An Extension of Casson's Invariant. (AM-126), Volume 126 / / Kevin Walker



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Walker Kevin Visualizza persona
Titolo: An Extension of Casson's Invariant. (AM-126), Volume 126 / / Kevin Walker Visualizza cluster
Pubblicazione: Princeton, NJ : , : Princeton University Press, , [2016]
©1992
Descrizione fisica: 1 online resource (140 pages) : illustrations
Disciplina: 514/.3
Soggetto topico: Three-manifolds (Topology)
Invariants
Soggetto non controllato: Absolute value
Andrew Casson
Basis (linear algebra)
Cohomology
Dan Freed
Dehn surgery
Dehn twist
Determinant
Diagram (category theory)
Disk (mathematics)
Elementary proof
Fundamental group
General position
Heegaard splitting
Homology sphere
Identity matrix
Inner product space
Lie group
Mathematical sciences
Morris Hirsch
Normal bundle
Scientific notation
Sequence
Surjective function
Symplectic geometry
Theorem
Topology
Classificazione: SK 320
Nota di bibliografia: Includes bibliographical references.
Nota di contenuto: Frontmatter -- Contents -- 0. Introduction -- 1. Topology of Representation Spaces -- 2. Definition of λ -- 3. Various Properties of λ -- 4. The Dehn Surgery Formula -- 5. Combinatorial Definition of λ -- 6. Consequences of the Dehn Surgery Formula -- A. Dedekind Sums -- B. Alexander Polynomials -- Bibliography
Sommario/riassunto: This book describes an invariant, l, of oriented rational homology 3-spheres which is a generalization of work of Andrew Casson in the integer homology sphere case. Let R(X) denote the space of conjugacy classes of representations of p(X) into SU(2). Let (W,W,F) be a Heegaard splitting of a rational homology sphere M. Then l(M) is declared to be an appropriately defined intersection number of R(W) and R(W) inside R(F). The definition of this intersection number is a delicate task, as the spaces involved have singularities. A formula describing how l transforms under Dehn surgery is proved. The formula involves Alexander polynomials and Dedekind sums, and can be used to give a rather elementary proof of the existence of l. It is also shown that when M is a Z-homology sphere, l(M) determines the Rochlin invariant of M.
Titolo autorizzato: An Extension of Casson's Invariant. (AM-126), Volume 126  Visualizza cluster
ISBN: 1-4008-8246-X
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910154744603321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Annals of mathematics studies ; ; no. 126.