Vai al contenuto principale della pagina
Autore: | Menʹshikov M. V (Mikhail Vasilʹevich) |
Titolo: | Non-homogeneous random walks : Lyapunov function methods for near-critical stochastic systems / / Mikhail Menshikov, University of Durham, Serguei Popov, Universidade Estadual de Campinas, Brazil, Andrew Wade, University of Durham [[electronic resource]] |
Pubblicazione: | Cambridge : , : Cambridge University Press, , 2017 |
Descrizione fisica: | 1 online resource (xviii, 363 pages) : digital, PDF file(s) |
Disciplina: | 519.2/82 |
Soggetto topico: | Random walks (Mathematics) |
Stochastic processes | |
Persona (resp. second.): | PopovSerguei <1972-> |
WadeAndrew <1981-> (Andrew R.) | |
Note generali: | Title from publisher's bibliographic system (viewed on 28 Feb 2017). |
Sommario/riassunto: | Stochastic systems provide powerful abstract models for a variety of important real-life applications: for example, power supply, traffic flow, data transmission. They (and the real systems they model) are often subject to phase transitions, behaving in one way when a parameter is below a certain critical value, then switching behaviour as soon as that critical value is reached. In a real system, we do not necessarily have control over all the parameter values, so it is important to know how to find critical points and to understand system behaviour near these points. This book is a modern presentation of the 'semimartingale' or 'Lyapunov function' method applied to near-critical stochastic systems, exemplified by non-homogeneous random walks. Applications treat near-critical stochastic systems and range across modern probability theory from stochastic billiards models to interacting particle systems. Spatially non-homogeneous random walks are explored in depth, as they provide prototypical near-critical systems. |
Titolo autorizzato: | Non-homogeneous random walks |
ISBN: | 1-316-86682-3 |
1-316-86790-0 | |
1-316-86808-7 | |
1-139-20846-2 | |
1-316-86826-5 | |
1-316-86844-3 | |
1-316-86898-2 | |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910159458503321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |