top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
3D printable gel-inks for tissue engineering : chemistry, processing, and applications / / Anuj Kumar, Stefan Ioan Voicu, Vijay Kumar Thakur, editors
3D printable gel-inks for tissue engineering : chemistry, processing, and applications / / Anuj Kumar, Stefan Ioan Voicu, Vijay Kumar Thakur, editors
Pubbl/distr/stampa Singapore : , : Springer, , [2021]
Descrizione fisica 1 online resource (400 pages)
Disciplina 610.28
Collana Gels Horizons: From Science to Smart Materials
Soggetto topico Biomedical materials
Three-dimensional printing
Tissue engineering
ISBN 981-16-4667-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- About This Book -- Contents -- About the Editors -- 1 Introduction to 3D Printing Technology for Biomedical Applications -- 1 Introduction -- 2 Printing Mechanism: Classification of 3D Printing Techniques -- 2.1 Selective Laser Sintering -- 2.2 Stereolithography -- 2.3 Fused Deposition Modeling -- 2.4 Ink-Jet Printing -- 3 Evolution of 3D-Printed Medical Objects-Then and Now -- 4 3D Printable Materials for Medical Applications -- 5 Significance of 3D-Printed Objects in the Medical Field -- 6 Applications of 3D Printing -- 6.1 3D Printing of Surgical Preparation -- 6.2 Custom-Made Prosthetics -- 6.3 Dental -- 6.4 3D Printing of Tissues, Organoids, and Tissue Regeneration -- 6.5 Medication Dosage and Pharmacology -- 6.6 Manufacturing of Surgical Tools and Medical Metal Materials -- 7 Potential and Major Limitations -- References -- 2 Characterization of Bioinks for 3D Bioprinting -- 1 Bioink Definition, Related Terms -- 2 Properties of Bioinks -- 2.1 Bioink for Extrusion-Based Bioprinting -- 2.2 Bioink for Laser-Based Bioprinting -- 2.3 Bioink for Droplet-Based Bioink -- 3 Characterization of Bioinks -- 3.1 Rheology -- 3.2 Printability -- 3.3 Biofabrication Window -- 3.4 Cell Density -- 3.5 Cytocompatibility and Functionality -- 3.6 Bioink Purity -- 3.7 Bioink Degradation -- 3.8 Viscosity and Molecular Weight -- 3.9 Bioink Homogeneity -- 3.10 Solubility -- 3.11 Spheroid Characterization -- 4 Conclusion and Future Prospects -- References -- 3 3D Printing of Hydrogel Constructs Toward Targeted Development in Tissue Engineering -- 1 Introduction -- 2 3D Printing Technologies for Hydrogel Inks -- 2.1 Light-Assisted Direct-Printing -- 2.2 Inkjet Printing -- 2.3 Direct Dispensing -- 3 Trends and Strategies in Designing Hydrogel-Based Inks -- 3.1 Single-Component Hydrogel Inks -- 3.2 Bi-Component Hydrogel Inks.
3.3 Nanocomposite Hydrogel Inks -- 3.4 Multicomponent Hydrogel Inks -- 3.5 Cell-Embedding and the Bio-Printability Window -- 4 Key Parameters in Designing Printable Hydrogel Formulation -- 4.1 Material Parameters -- 4.2 Crosslinking Strategies -- 4.3 Fabrication Parameters -- 4.4 Investigation of Printability -- 5 Evolution to 4D Printing -- References -- 4 Three-Dimensional Self-healing Scaffolds for Tissue Engineering Applications -- 1 Introduction -- 2 Understanding Nature's Method of Self-healing -- 3 Self-healing Supramolecular Hydrogels -- 4 Self-assembled Hydrogels for Tissue Engineering and Drug Delivery Applications -- 5 Supramolecular Chemistry -- 5.1 Hydrogen Bonding -- 5.2 Metal-Ligand Coordination Complexation -- 5.3 Electrostatic Interaction -- 5.4 Host-Guest Interactions -- 6 π-π Interactions -- 7 Bioinspired Systems Chemistry -- 8 Conclusion -- References -- 5 Gel-Inks for 3D Printing in Corneal Tissue Engineering -- 1 Introduction -- 1.1 Structure of the Cornea -- 1.2 Desired Qualities for Cornea Replacement -- 2 Corneal Regeneration in Tissue Engineering -- 2.1 Scaffold-Based Tissue Engineering for Corneal Regeneration -- 2.2 Synthetic Biomaterials for Corneal Regeneration -- 2.3 Corneal Regeneration Using Naturally Derived Biomaterials -- 3 Corneal Regeneration Using Gel-Based Scaffolds -- 3.1 Desired Properties of Gel-Inks for 3D Printing in Corneal Tissue Engineering -- 3.2 Biocompatible 3D-Printing Techniques for Bioinks Design -- 4 Combination and Characterization of Gel-Inks for in Corneal Regeneration -- 4.1 Rheological and Printability Examinations -- 4.2 Light Transmission Examination -- 4.3 Mechanical Characterizations -- 4.4 Biocompatibility Assessment -- 4.5 Oxygen Permeability -- 5 Conclusion and Future Perspectives -- References -- 6 Three Dimensional (3D) Printable Gel-Inks for Skin Tissue Regeneration.
1 Introduction -- 2 Skin: A Histological Overview -- 2.1 Epidermis -- 2.2 Basement Membrane -- 3 Skin Wound Healing: What We Know and Need to Know -- 4 Bioengineered Skin Substitutes -- 4.1 Epidermal Substitutes -- 4.2 Dermal Substitutes -- 4.3 Dermo-Epidermal Substitutes -- 5 Advanced Strategies for Skin Repair and Regeneration -- 5.1 Top-Down Approaches for Skin Regeneration -- 5.2 Bottom-Up Approaches for Skin Regeneration -- 5.3 Laser-Assisted 3D Bioprinting -- 5.4 Drop-Based Bioprinting -- 5.5 Extrusion-Based Bioprinting -- 5.6 Stereolithography-Based Bioprinting -- 5.7 Electrohydrodynamic-Based Bioprinting -- 5.8 Microfluidic-Based Bioprinting -- 6 Natural 3D Printable Gel-Inks for Skin Regeneration -- 6.1 Alginate -- 6.2 Collagen -- 6.3 Gelatin -- 6.4 Chitosan -- 6.5 Silk Fibroin -- 6.6 Decellularized Extracellular Matrix (dECM) -- 7 Synthetic 3D Printable Gel-Inks for Skin Regeneration -- 7.1 Poly(ε-caprolactone) (PCL) -- 7.2 Poly(Lactic Acid) (PLA) -- 7.3 Polyurethane (PU) -- 8 Conclusion -- References -- 7 Biofunctional Inks for 3D Printing in Skin Tissue Engineering -- 1 Introduction -- 2 The Structure and Function of Skin -- 3 Wound Types and Wound Healing Process -- 4 Skin Tissue Engineering -- 5 Overview of 3D Bioprinting -- 5.1 3D Bioprinting Technologies -- 6 3D Skin Bioprinting -- 6.1 Design Considerations for Skin Bioprinting -- 7 Biofunctional Inks for Bioprinting in Skin Tissue Engineering -- 7.1 Natural Bioinks -- 7.2 Bioinks Based on Synthetic Polymers -- 8 Current Challenges and Advances in Developing of Biofunctional Inks in Skin Tissue Engineering -- 9 Conclusion -- References -- 8 Bioceramic-Starch Paste Design for Additive Manufacturing and Alternative Fabrication Methods Applied for Developing Biomedical Scaffolds -- 1 Introduction -- 2 Starch -- 3 Bioceramics-Starch Pastes -- 3.1 Oxide Ceramics and Starch.
3.2 Glasses and Glass-Ceramics and Starch -- 3.3 Calcium Phosphates and Starch -- 4 Conventional Methods for Bioceramic Scaffold Fabrication -- 5 Additive Manufacturing for Bioceramic Scaffold Fabrication -- 6 Bone Scaffold Prototype with Hydroxyapatite and Starch -- 6.1 Technology Description -- 6.2 Raw Ceramic Preparation -- 6.3 Powder Preparation and Processing -- 6.4 Scaffold Design -- 6.5 Forming, Processing, and Sintering -- 6.6 Prototype Morphology -- 7 Conclusions -- References -- 9 Additive Manufacturing of Bioceramic Scaffolds for Bone Tissue Regeneration with Emphasis on Stereolithographic Processing -- 1 Scaffolds for Bone Repair: An Overview -- 2 Scaffold Requirements -- 2.1 Biocompatibility -- 2.2 Porosity -- 2.3 Mechanical Properties -- 2.4 Biodegradability -- 2.5 Surface Properties and Interaction with Cells -- 3 Conventional Methods for Ceramic Scaffold Fabrication -- 3.1 Foaming Methods -- 3.2 Phase Separation Methods -- 3.3 Spinning Methods -- 3.4 Thermal Consolidation of Particles -- 3.5 Sponge Replica Method -- 4 Additive Manufacturing Technologies for Ceramic Scaffold Fabrication -- 5 Stereolithographic Methods -- 5.1 Processing -- 5.2 The Slurry: Composition and Characteristics -- 5.3 The Photopolymerization Process: Chemical Basis -- 5.4 Key Parameters for the Photopolymerization Process -- 5.5 Post-processing -- 5.6 SLA: Advantages and Disadvantages -- 6 The Latest Frontier: Digital Light Processing (DLP)-Based Stereolithography -- 6.1 System Setup -- 6.2 Digital Micro-mirror Device (DMD) -- 7 Current Applications of SLA- and DLP-Derived Ceramic Scaffolds -- 8 Conclusions -- References -- 10 3D Printable Gel-Inks for Microbes and Microbial Structures -- 1 Introduction -- 2 Bioprinting -- 3 Bioprinting Techniques -- 4 Bioprinting Materials -- 5 Bioprinting and Microbes -- 5.1 Viruses -- 5.2 Bacteria and Bacterial Structures.
6 Summary and Concluding Remarks -- References -- 11 Methods of Polysaccharides Crosslinking: Future-Promising Crosslinking Techniques of Alginate Hydrogels for 3D Printing in Biomedical Applications -- 1 Introduction -- 2 Types of Polysaccharides -- 2.1 Sulfated Polysaccharides -- 2.2 Non-sulfated Polysaccharides -- 3 Methods for Crosslinking the Polysaccharides -- 3.1 Physical Crosslinking -- 3.2 Chemical Crosslinking -- 4 Some Applications of 3D-Based Cosslinking Alginate Hydrogels in Biomedicine -- 4.1 Tissue Engineering -- 4.2 Wound Dressing -- 4.3 Drug Delivery -- 5 Summary -- References -- 12 Future Perspectives for Gel-Inks for 3D Printing in Tissue Engineering -- 1 Introduction -- 2 From Biomaterials to Tissue Engineering -- 3 Future Perspectives for 3D Bioprinting -- 4 Conclusions -- References.
Record Nr. UNINA-9910502972703321
Singapore : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advanced Composite Biomaterials
Advanced Composite Biomaterials
Autore Voicu Stefan Ioan
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 electronic resource (184 p.)
Soggetto topico History of engineering & technology
Soggetto non controllato PMMA
zirconia (ZrO2)
nanocomposite
denture base
flexural strength
impact strength
fracture toughness
hardness
graphene oxide
silicone rubber
composite materials
antifouling
harmonic motion
corn straw
pretreatment
dyeing
chemical structure
tensile properties
UV barrier
water-resistance
polylactic acid
hydroxyapatite
composite films
industrial bamboo residue
holocellulose aerogel
hydrophobicity
fire resistance
thermal insulation material
nucleating agent
isotactic polypropylene
transcrystallinity
natural fibres
Tencel™
membrane
cellulose
water purification
tissue engineering
magnetic nanoparticles
composite
DDS
hyperthermia
collagen
scaffolds
membranes
hydrogels
whey protein fibrils
carbon nanotubes
carbon nano-onions
composites
interaction
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557662303321
Voicu Stefan Ioan  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Polymer Gels : Perspectives and Applications / / edited by Vijay Kumar Thakur, Manju Kumari Thakur, Stefan Ioan Voicu
Polymer Gels : Perspectives and Applications / / edited by Vijay Kumar Thakur, Manju Kumari Thakur, Stefan Ioan Voicu
Edizione [1st ed. 2018.]
Pubbl/distr/stampa Singapore : , : Springer Singapore : , : Imprint : Springer, , 2018
Descrizione fisica 1 online resource (414 pages) : illustrations
Disciplina 547.704545
Collana Gels Horizons: From Science to Smart Materials
Soggetto topico Biomedical engineering
Pharmaceutical technology
Polymers  
Biomedical Engineering and Bioengineering
Pharmaceutical Sciences/Technology
Polymer Sciences
ISBN 981-10-6080-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910299935103321
Singapore : , : Springer Singapore : , : Imprint : Springer, , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui