top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Multi-Strategy Learning Environment : Proceedings of ICMSLE 2024 / / edited by Vrince Vimal, Isidoros Perikos, Amrit Mukherjee, Vincenzo Piuri
Multi-Strategy Learning Environment : Proceedings of ICMSLE 2024 / / edited by Vrince Vimal, Isidoros Perikos, Amrit Mukherjee, Vincenzo Piuri
Edizione [1st ed. 2024.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024
Descrizione fisica 1 online resource (710 pages)
Disciplina 006.31
Collana Algorithms for Intelligent Systems
Soggetto topico Computational intelligence
Artificial intelligence
Computer vision
Natural language processing (Computer science)
Game theory
Computational Intelligence
Artificial Intelligence
Computer Vision
Natural Language Processing (NLP)
Game Theory
ISBN 981-9714-88-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- About the Editors -- 1 AI Powered Chat Assistant for Trauma Detection from Text and Voice Conversations with a Direct Doctor Connection -- 1 Introduction -- 2 Related Works -- 2.1 Emotional Intelligence in Communication: Research Challenges, Literature and Recent Achievements -- 2.2 Chatbot Mobile Isolation App for Depression -- 2.3 Mental Health Chatbot that Uses NLP and AI to Deliver Behavioral Insights and Remote Healthcare -- 2.4 Mental Health Support Chatbot Using NLP -- 2.5 Dost-Chatbot as Mental Health Assistant -- 2.6 Application of Cognitive Behavioral Therapy in Psychiatry: A Review -- 2.7 Revivify: Depression Research and Management Using Automated Tweets and Chatbots -- 2.8 Proposed Chatbot: Thinking and Problem-Solving Experience -- 2.9 Psykh, the Chatbot Using the Rasa Open Source Framework, to be Your Therapist and Stress Reliever -- 2.10 Identify Depression in a Person Using Speech Signals by Extracting Energy and Situations -- 3 Methodology -- 3.1 Module Description -- 4 Implementation -- 4.1 Implementation of Machine Learning Models -- 4.2 NLP Model Development -- 5 Result and Discussion -- 6 Conclusion -- References -- 2 An Intelligent Car Locating System Based on Arduino for a Massive Parking Place -- 1 Introduction -- 2 Motivation -- 3 Problem Statement -- 4 Project Scope -- 5 Objectives -- 6 Related Study -- 7 Comparison with Other System -- 8 Background Tools and Technology -- 8.1 Software Tools -- 8.2 Arduino Simulator -- 8.3 Hardware Tools -- 9 PCB Design of Intelligent Car Locating System for a Massive Parking Place -- 10 Proposed Model of Smart Car Parking System -- 11 Work Flow Diagram of Smart Car Locating System -- 12 Final Circuit of Intelligent Car Locating System for a Massive Parking Place -- 13 Implementation.
13.1 Final Output of Intelligent Car Locating System for a Massive Parking Place -- 14 Result and Discussion -- 15 Testing and Evaluation -- 15.1 Performance Analysis of IoT-Based Intelligent Car Parking System for Large Parking Lot Using Arduino -- 16 Contribution -- 17 Conclusion -- 18 Future Recommendation -- References -- 3 Electricity Load Forecasting Using LSTM for Household Usage -- 1 Introduction -- 2 Literature Review -- 3 LSTM for Electricity Load Forecasting Methodology -- 3.1 Building Machine-Learning Model -- 3.2 Training ML Model -- 4 Results and Discussions -- 4.1 Electricity Load Prediction Over Different Periods -- 4.2 Error Analysis for Electricity Load Prediction -- 4.3 Comparison with Conventional Methods -- 5 Conclusion -- References -- 4 A Cybersecurity Classification Model for Detecting Cyberattacks -- 1 Introduction -- 2 Literature Survey -- 2.1 Training with Support Vector Machine (SVM) for Cyberattack Detection -- 2.2 Normalization for Removing Noise from Given Datasets -- 2.3 Autoencoders with Cybersecurity -- 3 Dataset Description -- 4 Experimental Results -- 5 Conclusion -- References -- 5 Implementation of Baumann Skin Type Indicator Using Machine Learning -- 1 Introduction -- 2 Related Work -- 3 Brief Overview of the Fundamental Dichotomies of BSTI -- 4 Proposed Architecture -- 4.1 Machine Learning Model Architecture -- 4.2 Dataset -- 5 Experiments and Results -- 5.1 Results of the InceptionV3 Model -- 5.2 Comparison with Other Deep Learning Techniques -- 6 Conclusion and Future Work -- References -- 6 An On-demand Data Delivery and Secured Platform in Cloud Computing -- 1 Introduction -- 1.1 Methodology -- 2 Literature Survey -- 3 On-demand Data Delivery and Secured Platform (ODDSP) -- 3.1 Quality of Service (QoS) -- 4 Advanced Encryption Standard (AES) for Cloud Data -- 4.1 Performance Metrics.
4.2 Evaluation Results -- 5 Conclusion -- References -- 7 Real-Time Sign Language Interpreter Using MediaPipe, Dynamic Time Warping, and NLP -- 1 Introduction -- 2 Related Work -- 3 Proposed Methodology -- 3.1 Problem Domain -- 3.2 Problem Definition -- 3.3 Problem Statement -- 3.4 Dataset -- 4 Implementation -- 4.1 MediaPipe Detection/Holistic Model -- 4.2 Extract Landmarks -- 4.3 Draw Landmarks -- 4.4 Models -- 4.5 Dynamic Time Warping (DTW) -- 4.6 Sign Prediction -- 4.7 Phrase Generation -- 5 Result -- 6 Discussion -- 7 Conclusion -- References -- 8 A Support Vector Machine Classifier Approach for Predicting Preeclampsia and Gestational Hypertension -- 1 Introduction -- 2 Literature Review -- 3 Materials and Methods -- 3.1 Description of the Dataset -- 3.2 Data Preprocessing -- 3.3 Importance of Using SVM in ML Experiments -- 3.4 Training and Testing Data -- 3.5 Methodology -- 3.6 Selection of Algorithm -- 3.7 Evaluation of the Schemes' Performance -- 4 Results and Discussion -- 5 Conclusion -- References -- 9 Multilingual Communication: NMT-Based On-Call Speech Translation for Indian Languages -- 1 Introduction -- 2 Literature Review -- 3 Proposed Methodology -- 3.1 Dataset -- 3.2 Algorithms -- 3.3 Architecture -- 3.4 Model Training -- 3.5 Evaluation -- 4 Result -- 5 Conclusion -- 6 Future Work -- References -- 10 Brain Tumor Segmentation and Classification Using Deep Learning -- 1 Introduction -- 2 Literature Survey -- 2.1 Problem Formulation -- 2.2 Research Gap -- 3 Data and Variables -- 3.1 About Dataset -- 3.2 Variables for Segmentation Model: -- 3.3 Variables for Classification Model: -- 4 Methodology and Model Specifications -- 4.1 Segmentation Model -- 4.2 Classification Model -- 5 Empirical Results -- 5.1 Segmentation Model -- 5.2 Classification Model -- 6 Conclusion -- 7 Future Scope -- References.
11 ACO-Optimized DRL Model for Energy-Efficient Resource Allocation in High-Performance Computing -- 1 Introduction -- 2 Literature Review -- 3 Problem Definition -- 4 Methods -- 4.1 Ant Colony Optimization -- 4.2 DRL for Resource Allocation in HPC -- 5 Proposed Model -- 5.1 ACO-Optimized DRL for Resource Allocation in HPC -- 6 Experimental Analysis -- 6.1 Response Time Analysis -- 6.2 Makespan Analysis -- 6.3 Energy Consumption Analysis -- 7 Conclusion and Future Work -- References -- 12 Business Decision-Making Using Hybrid LSTM for Enhanced Operational Efficiency -- 1 Introduction -- 2 Literature Review -- 3 Problem Definition -- 4 Data Collection -- 4.1 Data Preprocessing -- 5 Hybrid Optimized LSTM Model for Sales Prediction -- 5.1 Loss Function -- 6 Experimental Analysis -- 6.1 Model Training -- 6.2 Forecast Analysis -- 6.3 Performance Analysis -- 7 Conclusion and Future Work -- References -- 13 Unveiling New Horizons in Machine Learning, NLP-Driven Framework for Student Learning Behavior -- 1 Introduction -- 2 Literature Review -- 3 Modeling and Analysis of Student Learning Behavior -- 3.1 Role of Machine Learning in Analyzing the Student Behavior -- 4 Techniques for Modeling Student Learning Behavior -- 4.1 Employing Natural Language Processing -- 4.2 Employing Natural Language Processing -- 5 Conclusion and Scope for Future Work -- References -- 14 Mirror Text Classification from Image Using Machine Learning Techniques -- 1 Introduction -- 2 Literature Review -- 3 Methodology -- 3.1 Input and Preprocessing -- 3.2 Clustering and Sub-clustering -- 3.3 Feature Extraction -- 3.4 Training -- 3.5 Mirror Text Identification -- 4 Results and Discussion -- 5 Conclusion -- References -- 15 Using Deep Learning to Identify Types of Lung Diseases from X-Ray Images -- 1 Introduction -- 2 Objective -- 3 Literature Survey -- 4 Proposed System -- 5 Conclusion.
References -- 16 A Light-Weight Data Storage and Delivery Platform in Cloud Computing -- 1 Introduction -- 1.1 Methodology -- 2 Literature Survey -- 3 Lempel-Ziv-Markov (LZMA) Compression -- 3.1 RSA-KEM (Key Encapsulation Mechanism) -- 3.2 Symmetric-Key Decryption -- 3.3 Dataset Description -- 3.4 Performance Metrics -- 4 Experimental Results -- 5 Conclusion -- References -- 17 Big Data Analytics Security Issues and Solutions in Healthcare -- 1 Introduction -- 2 The Need for Medical Care Analytics for Big Data -- 3 Different Big Data Analytics Phases -- 3.1 Extracting, Data Cleaning, and Data Collection -- 3.2 Integration and Aggregation of Data -- 3.3 Data Model -- 3.4 Data Delivery, Interpretation, and Feedback -- 4 Role-Based Application Security Principles -- 5 Big Data Lifecycle -- 6 Technologies in Use -- 7 Big Data Security Challenge and Solution -- 8 Conclusion -- References -- 18 Framework for Early-Stage Diabetes Mellitus Risk Prediction Using Hybrid Supervised Learning -- 1 Introduction -- 2 Literature Survey -- 3 Proposed Framework -- 4 Experimental Setup -- 4.1 Evaluation Metrics -- 5 Results and Discussion -- 5.1 Prediction Performance of ML Techniques -- 5.2 Optimization of Prediction Accuracy -- 6 Conclusion -- References -- 19 Brain Tumor Classification in MRI Images: A CNN and U-Net Approach -- 1 Introduction -- 2 Proposed Method -- 2.1 Data Collection -- 2.2 Image Preprocessing -- 2.3 Image Segmentation -- 2.4 Feature Extraction -- 2.5 Convolutional Neural Network (CNN) -- 2.6 U-Net Architecture -- 2.7 Callback Functions -- 3 Result and Discussion -- 3.1 Evaluation Metrics -- 3.2 Experimental Analysis and Result -- 3.3 Prediction of Tumor -- 4 Conclusion -- References -- 20 Cross-Modal Text-to-Video Retrieval Using Deep Learning -- 1 Introduction -- 2 Related Work -- 3 System Architecture -- 4 Methodology.
5 Model Implementation and Output.
Record Nr. UNINA-9910864194303321
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Production Technology of Underutilized Vegetable Crops / / edited by Savita, Monisha Rawat, and Vrince Vimal
Production Technology of Underutilized Vegetable Crops / / edited by Savita, Monisha Rawat, and Vrince Vimal
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2023]
Descrizione fisica 1 online resource (XII, 392 p. 1 illus.)
Disciplina 359.8205
Soggetto topico Vegetables
ISBN 3-031-15385-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1-Underutilized vegetables introduction and identification -- 2-Production technology of underutilized crops of alliaceae family -- 3-Production technology of underutilized leguminous vegetables -- 4-Production technology of underutilized vegetables of araceae family -- 5-Production technology of underutilized cucurbitaceous -- 6-Production technology of underutilized vegetables of rutaceae family -- 7-Production technology of underutilized vegetables of dioscoreace family -- 8-Production technology of underutilized vegetables of Aizoaceae family -- 9-Production technology of underutilized vegetables of basellaceae family -- 10-Production technology of underutilized vegetables of labitae family -- 11-Production nology of underutilized vegetables of martynaceae family -- 12-Production technology of underutilized vegetables of solanaceae family -- 13-Production technology of underutilized vegetables of apiaceae family -- 14-Production technology of underutilized vegetables of brassicaceae family -- 15-Production technology of underutilized vegetables of chenopodiaceae family -- 16-Production technology of underutilized vegetables of compositae family -- 17-Production technology of underutilized vegetables of euphorbiaceae family -- 18-Production technology of underutilized vegetables of moringaceae family -- 19-Production technology of underutilized vegetables of polygonaceae family -- 20-Production technology of underutilized vegetables of moraceae family -- 21-Production technology of underutilized vegetables of onagraceae family -- 22-Production technology of underutilized vegetables of portulaceae family -- 23-Production technology of underutilized vegetables of cannaceae family -- 24-Production technology of underutilized vegetables of marantaceae family -- 25-Protected cultivation of underutilized vegetables -- 26-Seed production of underutilized vegetables -- 27-Integrated disease management of underutilized vegetables -- 28-Integrated pest management of underutilized vegetables -- 29-Underutelized vegetables are grown in the Hydroponic and aeroponic system -- 30-Sustainable production of underutilized vegetables.
Record Nr. UNINA-9910717424903321
Cham, Switzerland : , : Springer, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui