top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Statistical modeling by wavelets [[electronic resource] /] / Brani Vidakovic
Statistical modeling by wavelets [[electronic resource] /] / Brani Vidakovic
Autore Vidakovic Brani <1955->
Pubbl/distr/stampa New York, : Wiley, 1999
Descrizione fisica 1 online resource (410 p.)
Disciplina 515.2433
519.5
Collana Wiley series in probability and mathematical statistics. Applied probability and statistics section
Soggetto topico Mathematical statistics
Wavelets (Mathematics)
ISBN 1-282-30775-4
9786612307751
0-470-31702-7
0-470-31786-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Statistical Modeling by Wavelets; Contents; Preface; Acknowledgments; 1. Introduction; 1.1. Wavelet Evolution; 1.2. Wavelet Revolution; 1.3. Wavelets and Statistics; 1.4. An Appetizer: California Earthquakes; 2. Prerequisites; 2.1. General; 2.2. Hilben Spaces; 2.2.1. Projection Theorem; 2.2.2. 0rthonomal Sets; 2.2.3. Reproducing Kernel Hilberf Spaces; 2.3. Fourier Transformation; 2.3.1. Basic Properties; 2.3.2. Poisson Summation Formula and Sampling Theorem; 2.3.3. Fourier Series; 2.3.4. Discrete Fourier Transform; 2.4. Heisenberg's Uncertainty Principle; 2.5. Some Important Function Spaces
2.6. Fundanzentals of Signal Processing2.7. Exercises; 3. Wavelets; 3.1. Continuous Wavelet Transformation; 3.1.1. Basic Properties; 3.1.2. Wavelets for Continuous Transfonnations; 3.2. Discretization of the Continuous Wavelet Transform; 3.3. Multiresolution Analysis; 3.3.1. Derivation of a Wavelet Function; 3.4. Same Important Wavelet Bases; 3.4.1. Haar's Wavelets; 3.4.2. Shannon's Wavelets; 3.4.3. Meyer's Wavelets; 3.4.4. Franklin s Wavelets; 3.4.5. Daubechies ' Conzpactly Supporled Wavelets; 3.5. Some Extensions; 3.5.1. Regularity of Wavelets
3.5.2. The Least Asytnmetric Daubechies ' Wavelets: Symrnlets3.5.3. Approxintations and Characterizations of Functional Spaces; 3.5.4. Daubechies-Lagarias Algorithm; 3.5.5. Moment Conditions; 3.5.6. Interpolating (Cardinal) Wavelets; 3.5.7. Pollen-Type Parameterization of Wavelets; 3.6. Exercises; 4. Discrete Wavelet Transformations; 4.1. Introduction; 4.2. The Cascade Algorithnt; 4.3. The Operator Notation of DWT; 4.3.1. Discrete Wavelet Transfomiations as Linear Transfonnations; 4.4. Exercises; 5. Some Generalizations; 5.1. Coiflets; 5.1.1. Construction of Coifrets
5.2. Biorthogonal Wavelets5.2.1. Construction of Biorthogonal Wavelets; 5.2.2. B-Spline Wavelets; 5.3. Wavelet Packets; 5.3.1. Basic Properties of Wavelet Packets; 5.3.2. Wavelet Packet Tables; 5.4. Best Basis Selection; 5.4.1. Some Cost Measures and the Best Basis Algorithm; 5.5. ε-Decimated and Stationary Wavelet Transformations; 5.5.1. ε-Decimated Wavelet Transformation; 5.5.2. Stationary (Non-Decimated) Wavelet Transformation; 5.6. Periodic Wavelet Transformations; 5.7. Multivariate Wavelet Transfornations; 5.8. Discussion; 5.9. Exercises; 6. Wavelet Shrinkage; 6.1. Shrinkage Method
6.2. Lineur Wavelet Regression Estimators6.2.1. Wavelet Kernels; 6.2.2. Local Constant Fit Estimators; 6.3. The Simplest Non-Linear Wavelet Shrinkage: Tliresholding; 6.3.1. Variable Selection and Thresholding; 6.3.2. Oracular Risk for Thresholding Rules; 6.3.3. Why the Wavelet Shrinkage Works; 6.3.4. Almost Sure Convergence of Wavelet Sh rinkuge Est imaf ors; 6.4. General Minimax Paradigm; 6.4.1. Translation of Minimaxity Results to the Wavelet Domain; 6.5. Thresholding Policies and Thresholdkg Rides; 6.5.1. Exact Risk Analysis of Thresholding Rules; 6.5.2. Large Sample Properties
6.5.3. Some Orher Shrinkage Rules
Record Nr. UNINA-9910144684203321
Vidakovic Brani <1955->  
New York, : Wiley, 1999
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Statistical modeling by wavelets [[electronic resource] /] / Brani Vidakovic
Statistical modeling by wavelets [[electronic resource] /] / Brani Vidakovic
Autore Vidakovic Brani <1955->
Pubbl/distr/stampa New York, : Wiley, 1999
Descrizione fisica 1 online resource (410 p.)
Disciplina 515.2433
519.5
Collana Wiley series in probability and mathematical statistics. Applied probability and statistics section
Soggetto topico Mathematical statistics
Wavelets (Mathematics)
ISBN 1-282-30775-4
9786612307751
0-470-31702-7
0-470-31786-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Statistical Modeling by Wavelets; Contents; Preface; Acknowledgments; 1. Introduction; 1.1. Wavelet Evolution; 1.2. Wavelet Revolution; 1.3. Wavelets and Statistics; 1.4. An Appetizer: California Earthquakes; 2. Prerequisites; 2.1. General; 2.2. Hilben Spaces; 2.2.1. Projection Theorem; 2.2.2. 0rthonomal Sets; 2.2.3. Reproducing Kernel Hilberf Spaces; 2.3. Fourier Transformation; 2.3.1. Basic Properties; 2.3.2. Poisson Summation Formula and Sampling Theorem; 2.3.3. Fourier Series; 2.3.4. Discrete Fourier Transform; 2.4. Heisenberg's Uncertainty Principle; 2.5. Some Important Function Spaces
2.6. Fundanzentals of Signal Processing2.7. Exercises; 3. Wavelets; 3.1. Continuous Wavelet Transformation; 3.1.1. Basic Properties; 3.1.2. Wavelets for Continuous Transfonnations; 3.2. Discretization of the Continuous Wavelet Transform; 3.3. Multiresolution Analysis; 3.3.1. Derivation of a Wavelet Function; 3.4. Same Important Wavelet Bases; 3.4.1. Haar's Wavelets; 3.4.2. Shannon's Wavelets; 3.4.3. Meyer's Wavelets; 3.4.4. Franklin s Wavelets; 3.4.5. Daubechies ' Conzpactly Supporled Wavelets; 3.5. Some Extensions; 3.5.1. Regularity of Wavelets
3.5.2. The Least Asytnmetric Daubechies ' Wavelets: Symrnlets3.5.3. Approxintations and Characterizations of Functional Spaces; 3.5.4. Daubechies-Lagarias Algorithm; 3.5.5. Moment Conditions; 3.5.6. Interpolating (Cardinal) Wavelets; 3.5.7. Pollen-Type Parameterization of Wavelets; 3.6. Exercises; 4. Discrete Wavelet Transformations; 4.1. Introduction; 4.2. The Cascade Algorithnt; 4.3. The Operator Notation of DWT; 4.3.1. Discrete Wavelet Transfomiations as Linear Transfonnations; 4.4. Exercises; 5. Some Generalizations; 5.1. Coiflets; 5.1.1. Construction of Coifrets
5.2. Biorthogonal Wavelets5.2.1. Construction of Biorthogonal Wavelets; 5.2.2. B-Spline Wavelets; 5.3. Wavelet Packets; 5.3.1. Basic Properties of Wavelet Packets; 5.3.2. Wavelet Packet Tables; 5.4. Best Basis Selection; 5.4.1. Some Cost Measures and the Best Basis Algorithm; 5.5. ε-Decimated and Stationary Wavelet Transformations; 5.5.1. ε-Decimated Wavelet Transformation; 5.5.2. Stationary (Non-Decimated) Wavelet Transformation; 5.6. Periodic Wavelet Transformations; 5.7. Multivariate Wavelet Transfornations; 5.8. Discussion; 5.9. Exercises; 6. Wavelet Shrinkage; 6.1. Shrinkage Method
6.2. Lineur Wavelet Regression Estimators6.2.1. Wavelet Kernels; 6.2.2. Local Constant Fit Estimators; 6.3. The Simplest Non-Linear Wavelet Shrinkage: Tliresholding; 6.3.1. Variable Selection and Thresholding; 6.3.2. Oracular Risk for Thresholding Rules; 6.3.3. Why the Wavelet Shrinkage Works; 6.3.4. Almost Sure Convergence of Wavelet Sh rinkuge Est imaf ors; 6.4. General Minimax Paradigm; 6.4.1. Translation of Minimaxity Results to the Wavelet Domain; 6.5. Thresholding Policies and Thresholdkg Rides; 6.5.1. Exact Risk Analysis of Thresholding Rules; 6.5.2. Large Sample Properties
6.5.3. Some Orher Shrinkage Rules
Record Nr. UNISA-996201249503316
Vidakovic Brani <1955->  
New York, : Wiley, 1999
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Statistical modeling by wavelets [[electronic resource] /] / Brani Vidakovic
Statistical modeling by wavelets [[electronic resource] /] / Brani Vidakovic
Autore Vidakovic Brani <1955->
Pubbl/distr/stampa New York, : Wiley, 1999
Descrizione fisica 1 online resource (410 p.)
Disciplina 515.2433
519.5
Collana Wiley series in probability and mathematical statistics. Applied probability and statistics section
Soggetto topico Mathematical statistics
Wavelets (Mathematics)
ISBN 1-282-30775-4
9786612307751
0-470-31702-7
0-470-31786-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Statistical Modeling by Wavelets; Contents; Preface; Acknowledgments; 1. Introduction; 1.1. Wavelet Evolution; 1.2. Wavelet Revolution; 1.3. Wavelets and Statistics; 1.4. An Appetizer: California Earthquakes; 2. Prerequisites; 2.1. General; 2.2. Hilben Spaces; 2.2.1. Projection Theorem; 2.2.2. 0rthonomal Sets; 2.2.3. Reproducing Kernel Hilberf Spaces; 2.3. Fourier Transformation; 2.3.1. Basic Properties; 2.3.2. Poisson Summation Formula and Sampling Theorem; 2.3.3. Fourier Series; 2.3.4. Discrete Fourier Transform; 2.4. Heisenberg's Uncertainty Principle; 2.5. Some Important Function Spaces
2.6. Fundanzentals of Signal Processing2.7. Exercises; 3. Wavelets; 3.1. Continuous Wavelet Transformation; 3.1.1. Basic Properties; 3.1.2. Wavelets for Continuous Transfonnations; 3.2. Discretization of the Continuous Wavelet Transform; 3.3. Multiresolution Analysis; 3.3.1. Derivation of a Wavelet Function; 3.4. Same Important Wavelet Bases; 3.4.1. Haar's Wavelets; 3.4.2. Shannon's Wavelets; 3.4.3. Meyer's Wavelets; 3.4.4. Franklin s Wavelets; 3.4.5. Daubechies ' Conzpactly Supporled Wavelets; 3.5. Some Extensions; 3.5.1. Regularity of Wavelets
3.5.2. The Least Asytnmetric Daubechies ' Wavelets: Symrnlets3.5.3. Approxintations and Characterizations of Functional Spaces; 3.5.4. Daubechies-Lagarias Algorithm; 3.5.5. Moment Conditions; 3.5.6. Interpolating (Cardinal) Wavelets; 3.5.7. Pollen-Type Parameterization of Wavelets; 3.6. Exercises; 4. Discrete Wavelet Transformations; 4.1. Introduction; 4.2. The Cascade Algorithnt; 4.3. The Operator Notation of DWT; 4.3.1. Discrete Wavelet Transfomiations as Linear Transfonnations; 4.4. Exercises; 5. Some Generalizations; 5.1. Coiflets; 5.1.1. Construction of Coifrets
5.2. Biorthogonal Wavelets5.2.1. Construction of Biorthogonal Wavelets; 5.2.2. B-Spline Wavelets; 5.3. Wavelet Packets; 5.3.1. Basic Properties of Wavelet Packets; 5.3.2. Wavelet Packet Tables; 5.4. Best Basis Selection; 5.4.1. Some Cost Measures and the Best Basis Algorithm; 5.5. ε-Decimated and Stationary Wavelet Transformations; 5.5.1. ε-Decimated Wavelet Transformation; 5.5.2. Stationary (Non-Decimated) Wavelet Transformation; 5.6. Periodic Wavelet Transformations; 5.7. Multivariate Wavelet Transfornations; 5.8. Discussion; 5.9. Exercises; 6. Wavelet Shrinkage; 6.1. Shrinkage Method
6.2. Lineur Wavelet Regression Estimators6.2.1. Wavelet Kernels; 6.2.2. Local Constant Fit Estimators; 6.3. The Simplest Non-Linear Wavelet Shrinkage: Tliresholding; 6.3.1. Variable Selection and Thresholding; 6.3.2. Oracular Risk for Thresholding Rules; 6.3.3. Why the Wavelet Shrinkage Works; 6.3.4. Almost Sure Convergence of Wavelet Sh rinkuge Est imaf ors; 6.4. General Minimax Paradigm; 6.4.1. Translation of Minimaxity Results to the Wavelet Domain; 6.5. Thresholding Policies and Thresholdkg Rides; 6.5.1. Exact Risk Analysis of Thresholding Rules; 6.5.2. Large Sample Properties
6.5.3. Some Orher Shrinkage Rules
Record Nr. UNINA-9910830956303321
Vidakovic Brani <1955->  
New York, : Wiley, 1999
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Statistical modeling by wavelets / / Brani Vidakovic
Statistical modeling by wavelets / / Brani Vidakovic
Autore Vidakovic Brani <1955->
Pubbl/distr/stampa New York, : Wiley, 1999
Descrizione fisica 1 online resource (410 p.)
Disciplina 515.2433
519.5
Collana Wiley series in probability and mathematical statistics. Applied probability and statistics section
Soggetto topico Mathematical statistics
Wavelets (Mathematics)
ISBN 9786612307751
9781282307759
1282307754
9780470317020
0470317027
9780470317860
0470317868
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Statistical Modeling by Wavelets; Contents; Preface; Acknowledgments; 1. Introduction; 1.1. Wavelet Evolution; 1.2. Wavelet Revolution; 1.3. Wavelets and Statistics; 1.4. An Appetizer: California Earthquakes; 2. Prerequisites; 2.1. General; 2.2. Hilben Spaces; 2.2.1. Projection Theorem; 2.2.2. 0rthonomal Sets; 2.2.3. Reproducing Kernel Hilberf Spaces; 2.3. Fourier Transformation; 2.3.1. Basic Properties; 2.3.2. Poisson Summation Formula and Sampling Theorem; 2.3.3. Fourier Series; 2.3.4. Discrete Fourier Transform; 2.4. Heisenberg's Uncertainty Principle; 2.5. Some Important Function Spaces
2.6. Fundanzentals of Signal Processing2.7. Exercises; 3. Wavelets; 3.1. Continuous Wavelet Transformation; 3.1.1. Basic Properties; 3.1.2. Wavelets for Continuous Transfonnations; 3.2. Discretization of the Continuous Wavelet Transform; 3.3. Multiresolution Analysis; 3.3.1. Derivation of a Wavelet Function; 3.4. Same Important Wavelet Bases; 3.4.1. Haar's Wavelets; 3.4.2. Shannon's Wavelets; 3.4.3. Meyer's Wavelets; 3.4.4. Franklin s Wavelets; 3.4.5. Daubechies ' Conzpactly Supporled Wavelets; 3.5. Some Extensions; 3.5.1. Regularity of Wavelets
3.5.2. The Least Asytnmetric Daubechies ' Wavelets: Symrnlets3.5.3. Approxintations and Characterizations of Functional Spaces; 3.5.4. Daubechies-Lagarias Algorithm; 3.5.5. Moment Conditions; 3.5.6. Interpolating (Cardinal) Wavelets; 3.5.7. Pollen-Type Parameterization of Wavelets; 3.6. Exercises; 4. Discrete Wavelet Transformations; 4.1. Introduction; 4.2. The Cascade Algorithnt; 4.3. The Operator Notation of DWT; 4.3.1. Discrete Wavelet Transfomiations as Linear Transfonnations; 4.4. Exercises; 5. Some Generalizations; 5.1. Coiflets; 5.1.1. Construction of Coifrets
5.2. Biorthogonal Wavelets5.2.1. Construction of Biorthogonal Wavelets; 5.2.2. B-Spline Wavelets; 5.3. Wavelet Packets; 5.3.1. Basic Properties of Wavelet Packets; 5.3.2. Wavelet Packet Tables; 5.4. Best Basis Selection; 5.4.1. Some Cost Measures and the Best Basis Algorithm; 5.5. ε-Decimated and Stationary Wavelet Transformations; 5.5.1. ε-Decimated Wavelet Transformation; 5.5.2. Stationary (Non-Decimated) Wavelet Transformation; 5.6. Periodic Wavelet Transformations; 5.7. Multivariate Wavelet Transfornations; 5.8. Discussion; 5.9. Exercises; 6. Wavelet Shrinkage; 6.1. Shrinkage Method
6.2. Lineur Wavelet Regression Estimators6.2.1. Wavelet Kernels; 6.2.2. Local Constant Fit Estimators; 6.3. The Simplest Non-Linear Wavelet Shrinkage: Tliresholding; 6.3.1. Variable Selection and Thresholding; 6.3.2. Oracular Risk for Thresholding Rules; 6.3.3. Why the Wavelet Shrinkage Works; 6.3.4. Almost Sure Convergence of Wavelet Sh rinkuge Est imaf ors; 6.4. General Minimax Paradigm; 6.4.1. Translation of Minimaxity Results to the Wavelet Domain; 6.5. Thresholding Policies and Thresholdkg Rides; 6.5.1. Exact Risk Analysis of Thresholding Rules; 6.5.2. Large Sample Properties
6.5.3. Some Orher Shrinkage Rules
Record Nr. UNINA-9911020109103321
Vidakovic Brani <1955->  
New York, : Wiley, 1999
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui