top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Plant, soil and microbes in tropical ecosystems / / Suresh Kumar Dubey, Satish Kumar Verma, editors
Plant, soil and microbes in tropical ecosystems / / Suresh Kumar Dubey, Satish Kumar Verma, editors
Pubbl/distr/stampa Singapore : , : Springer, , [2021]
Descrizione fisica 1 online resource (397 pages)
Disciplina 579.334
Collana Rhizosphere Biology
Soggetto topico Rhizobacteria - Tropics
Plant-microbe relationships - Tropics
Rizobiàcies
Relacions planta-microbi
Soggetto genere / forma Llibres electrònics
ISBN 981-16-3364-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Foreword -- Preface -- Contents -- About the Editors -- Chapter 1: Plant-Rhizobacteria Interactions to Induce Biotic and Abiotic Stress Tolerance in Plants -- 1.1 Introduction -- 1.2 Rhizobacteria as Beneficial Agents -- 1.3 Plant-Rhizobacteria Interactions and Abiotic Stress Tolerance -- 1.4 Plant-Rhizobacteria Interaction and Biotic Stress Tolerance -- 1.4.1 Mechanisms of Rhizobacteria-Mediated Phytopathogen Tolerance in Plants -- 1.5 Conclusion -- References -- Chapter 2: Rhizospheric and Endophytic Microorganisms and Their Role in Alleviation of Salinity Stress in Plants -- 2.1 Rhizosphere as a Site of Plant-Microbial Interaction -- 2.2 Endophytes in Plant-Microbe Interaction -- 2.2.1 Fungal Endophytes -- 2.2.2 Bacterial Endophytes -- 2.3 Salinity Stress in Plants -- 2.4 Mechanisms of Rhizospheric and Endophytic Bacteria for Salinity Stress Alleviation -- 2.4.1 ACC Deaminase Production -- 2.4.2 Maintaining Ion Homeostasis and Detoxification -- 2.4.3 Detoxification of Reactive Oxygen Species (ROS) -- 2.4.4 Improvement in Nutrient Acquisition -- 2.4.5 Maintaining Osmotic Balance -- 2.5 Approaches for Stress Mitigation Using Rhizospheric and Endophytic Bacteria -- 2.6 Conclusion and Future Prospects -- References -- Chapter 3: Rhizospheric Diversity of Cyanobacteria and Their Significance in Tropical Ecosystem -- 3.1 Introduction -- 3.2 Rhizospheric Diversity of Cyanobacteria in Tropical Ecosystem -- 3.3 Significance of Cyanobacteria in Tropical Ecosystem -- 3.3.1 Phytohormone Production -- 3.3.2 Cyanobacteria as a Biofertilizer -- 3.3.3 Advantages of BGA Biofertilizers -- 3.4 Plant Protection Against Diseases and Pest -- References -- Chapter 4: Cyanobacteria in Rhizosphere: Dynamics, Diversity, and Symbiosis -- 4.1 Introduction -- 4.2 Rhizospheric Diversity of Cyanobacteria -- 4.3 Biofertilizer -- 4.3.1 Free-Living Cyanobacteria.
4.3.2 Symbiotic System: Cyanobacteria-Azolla -- 4.4 Cyanobacterium Role in Bioremediation -- 4.4.1 Reclamation of Usar Land -- 4.4.2 Cyanobacterial Bioremediation -- 4.5 The Role of Cyanobacteria as Plant Growth Promoter -- 4.6 Plant Growth Promotion Through Direct Transfer of Fixed Carbon -- 4.7 Cyanobacterium Role as Biocontrol Agent -- 4.8 Cyanobacterium Role in Reduction of Methane Gas -- 4.9 Conclusion -- References -- Chapter 5: Effects of Herbicides on Soil Enzymes and Their Regulatory Factors in Agroecosystem: A Review -- 5.1 Introduction -- 5.2 Overall Production and Consumption of Herbicides -- 5.3 Classification of Herbicides -- 5.3.1 Based on Mode of Application -- 5.3.2 Based on Formulation -- 5.3.3 Based on Translocation -- 5.3.4 Based on Application Time -- 5.3.5 Based on Mode of Action -- 5.4 Fate of Herbicides After Application in the Soil -- 5.5 Soil Enzymes -- 5.5.1 An Indicator of Soil Health -- 5.5.2 Sources and Status of Enzymes in the Soil -- 5.5.3 Indispensable Soil Enzymes -- 5.5.3.1 Oxidoreductase -- 5.5.3.2 Hydrolases -- 5.6 Soil Enzyme and Herbicide Interaction -- 5.6.1 Dehydrogenase -- 5.6.2 Urease -- 5.6.3 Phosphatase -- 5.6.4 β-glucosidase -- 5.6.5 Catalase -- 5.6.6 Arylsulfatase -- 5.7 Factors Affecting Soil Enzyme-Herbicide Interactions -- 5.7.1 Temperature -- 5.7.2 Soil Moisture -- 5.7.3 Soil Organic Matter -- 5.7.4 Soil pH -- 5.7.5 Soil Texture, Type, and Depth Profile -- 5.7.6 Heavy Metal Amendment -- 5.7.7 Cultivation System -- 5.7.8 Fertilizer and Pesticide Treatment -- 5.8 Conclusions -- References -- Chapter 6: Diversity of Pathogenic Fungi in Agricultural Crops -- 6.1 Introduction -- 6.2 Concepts of Plant Disease -- 6.3 Diversity Based on Lifestyle -- 6.3.1 Biotrophs -- 6.3.2 Necrotrophs -- 6.3.3 Hemibiotrophs -- 6.4 Historically Known Major Fungal Diseases -- 6.4.1 Phytophthora Infestans.
6.4.2 Hemileia vastatrix -- 6.4.3 Helminthosporium oryzae -- 6.5 Global Perspectives of Major Fungal Diseases -- 6.5.1 Diversity of Fungal Diseases of Rice -- 6.5.2 Diversity of Fungal Diseases of Maize -- 6.5.3 Diversity of Fungal Diseases of Vegetables -- 6.6 Top Ten Fungal Diseases -- 6.7 Diversity of Major Disease-Causing Fungal Genera -- 6.7.1 Colletotrichum -- 6.7.2 Diaporthe -- 6.7.3 Sclerotium rolfsii -- 6.8 Diversity of Emerging Fungal Pathogens in Agro-Ecosystem -- 6.9 Perspectives and Future Outlook -- References -- Chapter 7: Application of Soil Microorganisms for Agricultural and Environmental Sustainability: A Review -- 7.1 Introduction -- 7.2 Microbial Functions in the Soil -- 7.3 Applications of Soil Microbes -- 7.3.1 Application of Soil Microbes in Agriculture -- 7.3.1.1 Soil Microbes as Biofertilizers -- 7.3.1.2 Soil Microbes as Biocontrol Agents -- 7.3.1.3 Soil Microbes in Saline Agricultural Soils -- 7.3.2 Applications of Microbes in Industries -- 7.3.2.1 Enzyme Production -- 7.3.2.2 Triacylglycerol Production -- 7.3.2.3 Biosurfactants -- 7.3.2.4 Food Industry -- 7.3.3 Pharmaceutical Applications -- 7.3.4 Environmental Applications -- 7.3.4.1 Bioremediation -- 7.3.4.2 Phytoremediation -- 7.3.5 Applications of Soil Microbes as Genetically Modified Microorganisms -- 7.4 Advances in Soil Microbial Ecology -- 7.4.1 DNA Extraction, PCR, Cloning, and Sequencing Techniques -- 7.4.2 Fungal PCR Primers -- 7.4.3 Metagenomics, Metaproteomics, and Metatranscriptomics -- 7.4.4 Community Profiling Techniques -- 7.4.4.1 DGGE and TGGE -- 7.4.4.2 T-RFLP Analysis of 16SrDNA for Characterization of Microbial Communities -- 7.4.4.3 SSCP Analysis for Microbial Characterization -- 7.4.4.4 ARDRA and ARISA -- 7.4.5 Microarray Technology -- 7.5 Future Prospects of Soil Microbial Ecology -- 7.6 Conclusion -- References.
Chapter 8: Biotic Constraints to Wheat Production in Tropics: Microbial Control Strategies and Mechanism -- 8.1 Introduction -- 8.2 Wheat Production: Acreage and Yield -- 8.2.1 Global Scenario -- 8.2.2 Indian Scenario -- 8.3 Biotic Constraints for Wheat Production -- 8.3.1 Fungal Diseases -- 8.3.1.1 Wheat Rust -- 8.3.1.2 Powdery Mildew -- 8.3.1.3 Karnal Bunt -- 8.3.1.4 Fusarium Head Blight -- 8.3.1.5 Blotch -- 8.3.1.6 Leaf Blight -- 8.3.1.7 Wheat Blast -- 8.3.2 Bacterial Diseases -- 8.4 Biological Control -- 8.4.1 Type of Interactions Contributing to Biological Control -- 8.4.1.1 Cell Wall-Degrading Enzymes (CWDEs) and Parasitism -- 8.4.1.2 Antibiosis -- 8.4.1.3 Competition for Nutrients and Space -- 8.4.1.4 Induced Resistance in the Host Plants -- 8.5 BCAs: Methods of Delivery -- 8.6 Commercial BCAs for Wheat Diseases -- 8.7 Biological Control Research in India: Past to Present -- 8.7.1 Commonwealth Institute of Biological Control (CIBC) -- 8.7.2 All India Coordinated Research Project on Biological Control of Crop Pests and Weeds (AICRP-BCandW) -- 8.7.3 The Society for Biocontrol Advancement (SBA) -- 8.7.4 Project Directorate of Biological Control (PDBC) -- 8.8 Future Outlook -- References -- Chapter 9: Phytohormones as Fundamental Regulators of Plant-Microbe Associations Under Stress Conditions -- 9.1 Introduction -- 9.2 Roles of Various Phytohormones in Plant Tolerance of Stresses -- 9.2.1 Cytokinins -- 9.2.2 Auxins -- 9.2.3 Abscisic Acid -- 9.2.4 Gibberellic Acid -- 9.3 Plant-Associated Microbes -- 9.3.1 Plant Growth-Promoting Bacteria -- 9.3.1.1 Phytohormones Produced by Plant Growth-Promoting Rhizobacteria -- 9.3.1.2 Enhancement of Plant Development by Plant Growth-Promoting Rhizobacteria Under Stress Conditions -- 9.3.2 Arbuscular Mycorrhizal Fungi Associated with Plants -- 9.3.2.1 Phytohormones Produced by Arbuscular Mycorrhizal Fungi.
9.3.2.2 Enhancement of Plant Development by Arbuscular Mycorrhizal Fungi Under Stress Conditions -- 9.3.3 Ectomycorrhizal Fungi Associated with Plants -- 9.3.3.1 Phytohormones Produced by Ectomycorrhizal Fungi -- 9.3.3.2 Enhancement of Plant Development by Ectomycorrhizal Fungi Under Stress Conditions -- 9.4 Conclusion -- References -- Chapter 10: Use of PGPR to Optimize Soil and Crop Productivity Under Abiotic Stress -- 10.1 Introduction -- 10.2 PGPR Mechanisms in Relation to Crop Productivity Under Abiotic Stresses -- 10.2.1 PGPRs Under Drought Stress -- 10.2.2 PGPRs Under Salinity Stress -- 10.2.3 PGPRs Under Thermic Stress -- 10.3 PGPRs in Soil Productivity Under Abiotic Stresses -- 10.4 PGPRs as a Remedial Agent Against Abiotic Stresses -- 10.5 Conclusion and Future Implication -- References -- Chapter 11: Framework for Studying Rhizospheric Microflora Under the Effect of Improved Crop Variety -- 11.1 Introduction -- 11.2 Formulation of Hypothesis -- 11.3 Source of Stress to Rhizosphere Soil Microflora -- 11.4 Experimental Design -- 11.5 Evaluation of Result -- 11.6 Conclusion -- References -- Chapter 12: Role of Rhizospheric Bacteria in Disease Suppression During Seedling Formation in Millet -- 12.1 Introduction -- 12.2 Millets Crop -- 12.3 Millets Seedling Disease -- 12.4 Role of Rhizospheric Bacteria in Disease Suppression -- 12.5 Mechanism of Disease Suppression -- 12.6 Lytic Enzymes -- 12.7 Antibiotics -- 12.8 Volatile Organic Compounds (VOCs) -- 12.9 Siderophore -- 12.10 Lipopeptides -- 12.11 Induced Systemic Resistance -- 12.12 Conclusion -- References -- Chapter 13: Metagenomics of Plant Rhizosphere and Endophytic Association: Concepts and Applications -- 13.1 Introduction -- 13.2 Study of Microbial Community in Plant Rhizosphere and Endophytic Association -- 13.2.1 Sampling, DNA Extraction, and Sequencing.
13.2.2 Methods of Metagenomics Analysis.
Record Nr. UNINA-9910502980803321
Singapore : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Seed Endophytes [[electronic resource] ] : Biology and Biotechnology / / edited by Satish Kumar Verma, James Francis White, Jr
Seed Endophytes [[electronic resource] ] : Biology and Biotechnology / / edited by Satish Kumar Verma, James Francis White, Jr
Edizione [1st ed. 2019.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Descrizione fisica 1 online resource (497 pages)
Disciplina 579.178
Soggetto topico Microbial genetics
Microbial genomics
Microbiology
Plant breeding
Microbial Genetics and Genomics
Applied Microbiology
Plant Breeding/Biotechnology
ISBN 3-030-10504-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Section A: Seed Endophytes: Introduction, and Methods for Assessment and Management -- 1. Seed-vectored microbes: Their roles in improving seedling fitness and competitor plant suppression -- 2. Thinking about PPFM bacteria as a model of seed endophytes: Who are they? Where did they come from? What are they doing for the plant? What can they do for us? -- 3. Seed endophytes and their potential applications -- 4. Exploring endophytic communities of plants: Methods for assessing diversity, effects on host development, and potential biotechnological applications -- 5. Understanding the indigenous seed microbiota to design bacterial seed treatments -- Section B: Seed Endophytes: Ecology, Transmission and Adaptations -- 6. The ecology of seed microbiota -- 7. Programming plants for climate resilience through symbiogenics -- 8. Agave seed endophytes: Ecology and impacts on root architecture, nutrient acquisition and cold stress tolerance -- 9. Chemical warfare in the plant microbiome leads to a balance of antagonisms and a healthy plant -- 10. Fungal and bacterial maize kernal interactions with the vertically transmitted endophytic state of Fusarium verticillioides -- Section C: Seed Endophytes: Biology and Functional Roles in Plant development -- 11. Functional roles of seed-inhabiting endophytes of rice -- 12. Mechanism of interaction of endophytic microbes with plants -- 13. Fitness attributes of bacterial and fungal seed endophytes of tall fescue -- 14. Role of the plant root microbiome in abiotic stress tolerance -- 15. Endophytic microbes: Prospects and their application in abiotic stress management and phytoremediation -- 16. Pine seeds carry symbionts: Endophyte transmission re-examined -- Section D: Seed Endophytes: Agricultural Applications and Biotechnology -- 17. Seed endophytes of Jasione Montana: Arsenic detoxification workers in an eco-friendly factory -- 18. Agricultural applications of endophytic microflora -- 19. Rhizome endophytes: Role and application in sustainable agriculture -- 20. Agriculturally important biosynthetic features of endophytic microorganisms -- 21. Microbial Endophytes of maize seeds and their application in crop improvements -- 22. Colonization of seeds by soilborne fungi: linking seed dormancy-defense syndromes, evolutionary constraints, and fungal traits -- 23. Seed Endophytes in Crop plants:Metagenomic approaches to study the functional roles and interactions. .
Record Nr. UNINA-9910337951603321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui