Vai al contenuto principale della pagina

Improving Classifier Generalization : Real-Time Machine Learning based Applications / / by Rahul Kumar Sevakula, Nishchal K. Verma



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Sevakula Rahul Kumar Visualizza persona
Titolo: Improving Classifier Generalization : Real-Time Machine Learning based Applications / / by Rahul Kumar Sevakula, Nishchal K. Verma Visualizza cluster
Pubblicazione: Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023
Edizione: 1st ed. 2023.
Descrizione fisica: 1 online resource (181 pages)
Disciplina: 629.8
Soggetto topico: Machine learning
Computational intelligence
Pattern recognition systems
Machine Learning
Computational Intelligence
Automated Pattern Recognition
Persona (resp. second.): VermaNishchal K.
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: Introduction to classification algorithms -- Methods to improve generalization performance -- MVPC – a classifier with very low VC dimension -- Framework for reliable fault detection with sensor data -- Membership functions for Fuzzy Support Vector Machine in noisy environment -- Stacked Denoising Sparse Autoencoder based Fuzzy rule classifiers -- Epilogue.
Sommario/riassunto: This book elaborately discusses techniques commonly used to improve generalization performance in classification approaches. The contents highlight methods to improve classification performance in numerous case studies: ranging from datasets of UCI repository to predictive maintenance problems and cancer classification problems. The book specifically provides a detailed tutorial on how to approach time-series classification problems and discusses two real time case studies on condition monitoring. In addition to describing the various aspects a data scientist must consider before finalizing their approach to a classification problem and reviewing the state of the art for improving classification generalization performance, it also discusses in detail the authors own contributions to the field, including MVPC - a classifier with very low VC dimension, a graphical indices based framework for reliable predictive maintenance and a novel general-purpose membership functions for Fuzzy Support Vector Machine which provides state of the art performance with noisy datasets, and a novel scheme to introduce deep learning in Fuzzy Rule based classifiers (FRCs). This volume will serve as a useful reference for researchers and students working on machine learning, health monitoring, predictive maintenance, time-series analysis, gene-expression data classification. .
Titolo autorizzato: Improving classifier generalization  Visualizza cluster
ISBN: 981-19-5073-3
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910627248403321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Studies in Computational Intelligence, . 1860-9503 ; ; 989