Carbon allotropes and composites : materials for environment protection and remediation / / edited by Chandrabhan Verma and Chaudhery Mustansar Hussain
| Carbon allotropes and composites : materials for environment protection and remediation / / edited by Chandrabhan Verma and Chaudhery Mustansar Hussain |
| Pubbl/distr/stampa | Hoboken, NJ ; Beverly, MA : , : John Wiley & Sons, Inc. : , : Scrivener Publishing LLC, , [2023] |
| Descrizione fisica | 1 online resource (409 pages) |
| Disciplina | 929.605 |
| Soggetto topico |
Composite materials
Bioremediation - Materials |
| ISBN |
1-394-16791-1
1-394-16790-3 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Preparation of Carbon Allotropes Using Different Methods -- Abbreviations -- 1.1 Introduction -- 1.2 Synthesis Methods -- 1.2.1 Synthesis of CNTs -- 1.2.1.1 Arc Discharge Method -- 1.2.1.2 Laser Ablation Method -- 1.2.1.3 Chemical Vapor Deposition (CVD) -- 1.2.1.4 Plasma-Enhanced CVD (PE-CVD) -- 1.2.2 Synthesis of CQDs -- 1.2.2.1 Arc Discharge -- 1.2.2.2 Laser Ablation -- 1.2.2.3 Acidic Oxidation -- 1.2.2.4 Combustion/Thermal Routes -- 1.2.2.5 Microwave Pyrolysis -- 1.2.2.6 Electrochemistry Method -- 1.2.2.7 Hydrothermal/Solvothermal Synthesis -- 1.3 Conclusions -- References -- Chapter 2 Carbon Allotrope Composites: Basics, Properties, and Applications -- 2.1 Introduction -- 2.2 Allotropes of Carbon -- 2.3 Basics of Carbon Allotrope Composites and Their Properties -- 2.4 Composites of Graphite or Graphite Oxide (GO) -- 2.4.1 Applications of Graphite Oxide -- 2.5 Composites of Graphene -- 2.5.1 Applications of Graphene Oxide -- 2.6 Composite of Graphite-Carbon Nanotube (Gr-CNT)/Polythene or Silicon -- 2.6.1 Applications of Graphite-Carbon Nanotube (Gr-CNT)/Polythene or Silicon -- 2.7 Graphene (or Graphene Oxide)-Carbon Nanofiber (CNF) Composites -- 2.7.1 Applications of CNF Composites -- 2.8 Graphene-Fullerene Composites -- 2.8.1 Applications of Graphene-Fullerene Composites -- 2.9 Conclusion -- References -- Chapter 3 Activation of Carbon Allotropes Through Covalent and Noncovalent Functionalization: Attempts in Modifying Properties for Enhanced Performance -- 3.1 Introduction -- 3.1.1 Carbon Allotropes: Fundamentals and Properties -- 3.1.1.1 Graphite -- 3.1.1.2 Diamond -- 3.1.1.3 Graphene -- 3.1.1.4 Activated Carbon -- 3.1.1.5 Carbon Nanotubes and Fullerene -- 3.1.2 Functionalization of Carbon Allotropes: Synthesis and Characterization.
3.1.2.1 Covalent Functionalization of Carbon Allotropes: Synthesis and Characterization -- 3.1.2.2 Noncovalent Functionalization of Carbon Allotropes: Synthesis and Characterization -- 3.2 Applications of Functionalized Carbon Allotropes -- 3.2.1 Biomedical -- 3.2.2 Waste Treatment -- 3.2.3 Pollutants Decontamination -- 3.2.4 Anticorrosive -- 3.2.5 Tribological -- 3.2.6 Catalytic -- 3.2.7 Reinforced Materials -- 3.3 Conclusions and Future Directions -- References -- Chapter 4 Carbon Allotropes in Lead Removal -- 4.1 Introduction -- 4.2 Carbon Nanomaterials (CNMs) -- 4.3 Dimension-Based Types of Carbon Nanomaterials -- 4.4 Purification of Water Using Fullerenes -- 4.5 Application of Graphene and Its Derivatives in Water Purification -- 4.6 Application of Carbon Nanotubes (CNTs) in Water Purification -- 4.7 Conclusion -- References -- Chapter 5 Carbon Allotropes in Nickel Removal -- 5.1 Introduction -- 5.2 Carbon and Its Allotropes: As Remediation Technology for Ni -- 5.2.1 Nanotubes Based on Carbon -- 5.2.1.1 Overview -- 5.2.1.2 Features of CNTs -- 5.2.2 Fullerenes -- 5.2.3 Graphene -- 5.2.3.1 Overview -- 5.2.3.2 Properties -- 5.3 Removal of Ni in Wastewater by Use of Carbon Allotropes -- 5.3.1 Carbon Nanotubes for Ni Adsorption From Aqueous Solutions -- 5.3.2 Ni Adsorption From Aqueous Solutions on Composite Material of MWCNTs -- 5.3.3 GR and GO-Based Adsorbents for Removal of Ni -- 5.4 Conclusion -- References -- Chapter 6 Molybdenum-Modified Carbon Allotropes in Wastewater Treatment -- 6.1 Introduction -- 6.2 Carbon-Based Allotropes -- 6.2.1 Graphene -- 6.2.2 Graphite -- 6.2.3 Carbon Nanotubes -- 6.2.4 Glassy Carbon (GC) -- 6.3 Molybdenum Disulfide -- 6.3.1 Synthesis of MoS2 -- 6.3.2 Physical Methods -- 6.3.3 Chemical Methods -- 6.3.4 Properties -- 6.4 Application of MoS2 -- 6.4.1 Dye-Sensitized Solar Cells (DSSCs) -- 6.4.2 Catalyst. 6.4.3 Desalination -- 6.4.4 Lubrication -- 6.4.5 Sensor -- 6.4.6 Electroanalytical -- 6.4.7 Biomedical -- 6.5 Molybdenum-Modified Carbon Allotropes in Wastewater Treatment -- 6.6 Conclusion -- References -- Chapter 7 Carbon Allotropes in Other Metals (Cu, Zn, Fe etc.) Removal -- 7.1 Introduction -- 7.2 Carbon-Allotropes: Synthesis Methods, Applications and Future Perspectives -- 7.3 Reaffirmations of Heavy Metal Contaminations in Water and Their Toxic Effects -- 7.3.1 Copper -- 7.3.2 Zinc -- 7.3.3 Lead -- 7.3.4 Cadmium -- 7.3.5 Arsenic -- 7.4 Technology is Used to Treat Heavy Ions of Metal -- 7.4.1 Chemical Precipitation -- 7.4.2 Ion-Exchange -- 7.4.3 Adsorption -- 7.4.4 Membrane Filtration -- 7.4.5 Electrodialysis -- 7.4.6 Flotation -- 7.4.7 Electrochemical Treatment -- 7.4.8 Electroflotation -- 7.4.9 Coagulation and Flocculation -- 7.5 Factors Influencing How Heavy Metal Ions Adhere to CNTs -- 7.5.1 pH -- 7.5.2 Ionic Strength -- 7.5.3 CNT Dosage -- 7.5.4 Contact Time -- 7.5.5 Temperature -- 7.5.6 Thermodynamic Variables -- 7.5.7 CNT Regeneration -- 7.5.8 Isotherm Equation -- 7.5.9 Current Issues and the Need for Additional Study -- 7.6 Conclusions -- Acknowledgments -- References -- Chapter 8 Carbon Allotropes in Phenolic Compounds Removal -- 8.1 Introduction -- 8.2 Carbon Materials in Phenol Removal -- 8.2.1 Activated Carbon -- 8.2.2 Graphene -- 8.2.3 Carbon Nanotubes -- 8.2.4 Graphene Oxide and Reduced Graphene Oxide -- 8.2.5 Graphitic Carbon Nitride -- 8.2.6 Carbon Materials in the Biodegradation of Phenols -- 8.3 Conclusions -- References -- Chapter 9 Carbon Allotropes in Carbon Dioxide Capturing -- 9.1 Introduction -- 9.1.1 Importance of Carbon Allotropes in Carbon Dioxide Capturing -- 9.2 Main Part -- 9.2.1 Polymer-Based Carbon Allotropes in Carbon Dioxide Capturing. 9.2.2 Graphene-Aerogels-Based Carbon Allotropes in Carbon Dioxide Capturing -- 9.3 Functionalized Graphene-Based Carbon Allotropes in Carbon Dioxide Capturing -- 9.4 Conclusions -- References -- Chapter 10 Carbon Allotropes in Air Purification -- 10.1 Introduction -- 10.2 Historical and Chemical Properties of Some Designated Carbon-Based Allotropes -- 10.3 Structure and Characteristics of Carbon Allotropes -- 10.4 Uses of Carbon Nanotube Filters for Removal of Air Pollutants -- 10.5 Physicochemical Characterization of CNTs -- 10.6 TiO2 Nanofibers in a Simulated Air Purifier Under Visible Light Irradiation -- 10.7 Poly (Vinyl Pyrrolidone) (PVP) -- 10.8 VOCs -- 10.9 Heavy Metals -- 10.10 Particulate Matter (PM) -- 10.11 Techniques to Remove Air Pollutants and Improve Air Treatment Efficiency -- 10.12 Removal of NOX by Photochemical Oxidation Process -- 10.13 Chemically Adapted Nano-TiO2 -- 10.14 Alternative Nanoparticulated System -- 10.15 Photodegradation of NOX Evaluated for the ZnO-Based Systems -- 10.16 Synthesis and Applications of Carbon Nanotubes -- 10.17 Mechanism of Technologies -- 10.18 Conclusion -- References -- Chapter 11 Carbon Allotropes in Waste Decomposition and Management -- 11.1 Introduction -- 11.2 Management Methods for Waste -- 11.2.1 Landfilling -- 11.2.2 Incineration -- 11.2.3 Mechanical Recycling -- 11.2.3.1 Downcycling Method -- 11.2.3.2 Upcycling Method -- 11.3 Process of Pyrolysis: Waste Management to the Synthesis of Carbon Allotropes -- 11.4 Synthesis Methods to Produce Carbon-Based Materials From Waste Materials -- 11.4.1 Catalytic Pyrolysis -- 11.4.2 Batch Pyrolysis-Catalysis -- 11.4.3 CVD Method -- 11.4.4 Pyrolysis-Deposition Followed by CVD -- 11.4.5 Thermal Decomposition -- 11.4.6 Activation Techniques -- 11.4.6.1 Physical Activation Technique -- 11.4.6.2 Chemical Activation Technique. 11.5 Use of Waste Materials for the Development of Carbon Allotropes -- 11.5.1 Synthesis of CNTs Using Waste Materials -- 11.5.2 Synthesis of Graphene Using Waste Materials -- 11.6 Applications for Carbon-Based Materials -- 11.6.1 CNTs -- 11.6.2 Graphene -- 11.6.3 Activated Carbon -- 11.7 Conclusions -- References -- Chapter 12 Carbon Allotropes in a Sustainable Environment -- 12.1 Introduction -- 12.2 Functionalization of Carbon Allotropes -- 12.2.1 Covalent Functionalization -- 12.2.2 Noncovalent Functionalization -- 12.3 Developments of Carbon Allotropes and Their Applications -- 12.4 Carbon Allotropes in Sustainable Environment -- 12.5 Carbon Allotropes Purification Process in the Treatment of Wastewater -- 12.5.1 Fullerenes -- 12.5.2 Bucky Paper Membrane (BP) -- 12.5.3 Carbon Nanotubes (CNTs) -- 12.5.3.1 CNT Adsorption Mechanism -- 12.5.3.2 CNTs Ozone Method -- 12.5.3.3 CNTs-Fenton-Like Systems -- 12.5.3.4 CNTs-Persulfates Systems -- 12.5.3.5 CNTs-Ferrate/Permanganate Systems -- 12.5.4 Graphene -- 12.6 Removal of Various Pollutants -- 12.6.1 Arsenic -- 12.6.2 Drugs and Pharmaceuticals -- 12.6.3 Heavy Metals -- 12.6.4 Pesticides and Other Pest Controllers -- 12.6.5 Fluoride -- 12.7 Carbon Dioxide (CO2) Adsorption -- 12.8 Conclusion and Future Perspective -- References -- Chapter 13 Carbonaceous Catalysts for Pollutant Degradation -- 13.1 Introduction -- 13.2 Strategies to Develop Carbon-Based Material -- 13.3 Advantages of Carbon-Based Metal Nanocomposites -- 13.4 Methods for the Development of Carbon-Based Nanocomposites -- 13.5 Carbon-Based Photocatalyst -- 13.5.1 Fullerene (C60) -- 13.5.2 Carbon Nanotubes -- 13.5.3 Graphene -- 13.5.4 Graphitic Carbon Nitride (g-C3N4) -- 13.5.5 Diamond -- 13.6 Applications -- 13.6.1 Dye Degradation -- 13.6.2 Organic Transformation -- 13.6.3 NOx Removal -- 13.7 Factors Affecting Degradation -- 13.7.1 Radiation. 13.7.2 Exfoliation. |
| Record Nr. | UNINA-9910830379103321 |
| Hoboken, NJ ; Beverly, MA : , : John Wiley & Sons, Inc. : , : Scrivener Publishing LLC, , [2023] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Grafted biopolymers as corrosion inhibitors : safety, sustainability, and efficiency / / edited by Jeenat Aslam, Chandrabhan Verma, and Ruby Aslam
| Grafted biopolymers as corrosion inhibitors : safety, sustainability, and efficiency / / edited by Jeenat Aslam, Chandrabhan Verma, and Ruby Aslam |
| Pubbl/distr/stampa | Hoboken, NJ : , : John Wiley & Sons, Inc., , [2023] |
| Descrizione fisica | 1 online resource (496 pages) |
| Collana | Wiley series in corrosion |
| Soggetto topico |
Biopolymers
Corrosion and anti-corrosives |
| ISBN |
1-119-88139-0
1-119-88137-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Intro -- Grafted Biopolymers as Corrosion Inhibitors -- Contents -- About the Editors -- List of Contributors -- Preface -- Part 1 Economic and Legal Issue of Corrosion -- 1 Corrosion: Basics, Economic Adverse Effects, and its Mitigation -- 2 Corrosion Inhibition: Past and Present Developments and Future Directions -- 3 Biopolymers as Corrosion Inhibitors: Relative Inhibition Potential of Biopolymers and Grafted Biopolymers -- 4 Biopolymers vs. Grafted Biopolymers: Challenges and Opportunities -- Part 2 Overview of Sustainable Grafted Biopolymers -- 5 Sustainable Grafted Biopolymers: Synthesis and Characterizations -- 6 Sustainable Grafted Biopolymers: Properties and Applications -- 7 Factors Affecting Biopolymers Grafting -- Part 3 Sustainable Grafted Biopolymers as Corrosion Inhibitors -- 8 Corrosion Inhibitors: Introduction, Classification and Selection Criteria -- 9 Methods of Corrosion Measurement: Chemical, Electrochemical, Surface, and Computational -- 10 Experimental and Computational Methods of Corrosion Assessment: Recent Updates on Concluding Remarks -- 11 Grafted Natural Gums Used as Sustainable Corrosion Inhibitors -- 12 Grafted Pectin as Sustainable Corrosion Inhibitors -- 13 Grafted Chitosan as Sustainable Corrosion Inhibitors -- 14 Grafted Starch Used as Sustainable Corrosion Inhibitors -- 15 Grafted Cellulose as Sustainable Corrosion Inhibitors -- 16 Sodium Alginate: Grafted Alginates as Sustainable Corrosion Inhibitors -- 17 Grafted Dextrin as a Corrosion Inhibitor -- 18 Grafted Biopolymer Composites and Nanocomposites as Sustainable Corrosion Inhibitors -- 19 Industrially Useful Corrosion Inhibitors: Grafted Biopolymers as Ideal Substitutes -- Index -- EULA. |
| Record Nr. | UNINA-9910731598503321 |
| Hoboken, NJ : , : John Wiley & Sons, Inc., , [2023] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Green Chemical Synthesis with Microwaves and Ultrasound
| Green Chemical Synthesis with Microwaves and Ultrasound |
| Autore | Verma Dakeshwar Kumar |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2024 |
| Descrizione fisica | 1 online resource (409 pages) |
| Altri autori (Persone) |
VermaChandrabhan
FuertesPaz Otero |
| Soggetto topico |
Green chemistry
Microwave heating |
| ISBN |
9783527844470
3527844473 9783527844494 352784449X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Title Page -- Copyright -- Contents -- About the Editors -- Preface -- Chapter 1 Ultrasound Irradiation: Fundamental Theory, Electromagnetic Spectrum, Important Properties, and Physical Principles -- 1.1 Introduction -- 1.2 Cavitation History -- 1.2.1 Basics of Cavitation -- 1.2.2 Types of Cavitation -- 1.3 Application of Ultrasound Irradiation -- 1.3.1 Sonoluminescence and Sonophotocatalysis -- 1.3.2 Industrial Cleaning -- 1.3.3 Material Processing -- 1.3.4 Chemical and Biological Reactions -- 1.4 Conclusion -- Acknowledgments -- References -- Chapter 2 Fundamental Theory of Electromagnetic Spectrum, Dielectric and Magnetic Properties, Molecular Rotation, and the Green Chemistry of Microwave Heating Equipment -- 2.1 Introduction -- 2.1.1 Historical Background -- 2.1.2 Green Chemistry Principles for Sustainable System -- 2.2 Fundamental Concepts of the Electromagnetic Spectrum Theory -- 2.3 Electrical, Dielectric, and Magnetic Properties in Microwave Irradiation -- 2.4 Microwave Irradiation Molecular Rotation -- 2.5 Fundamentals of Electromagnetic Theory in Microwave Irradiation -- 2.5.1 Electromagnetic Radiations and Microwave -- 2.5.2 Heating Mechanism of Microwave: Conventional Versus Microwave Heating -- 2.6 Physical Principles of Microwave Heating and Equipment -- 2.7 Green Chemistry Through Microwave Heating: Applications and Benefits -- 2.8 Conclusion -- References -- Chapter 3 Conventional Versus Green Chemical Transformation: MCRs, Solid Phase Reaction, Green Solvents, Microwave, and Ultrasound Irradiation -- 3.1 Introduction -- 3.2 A Brief Overview of Green Chemistry -- 3.2.1 Definition and Historical Background -- 3.2.2 Significance -- 3.3 Multicomponent Reactions -- 3.4 Solid Phase Reactions -- 3.5 Microwave Induced Synthesis -- 3.6 Ultrasound Induced Synthesis -- 3.7 Green Chemicals and Solvents.
3.8 Conclusions and Outlook -- References -- Chapter 4 Metal‐Catalyzed Reactions Under Microwave and Ultrasound Irradiation -- 4.1 Ultrasonic Irradiation -- 4.1.1 Iron‐Based Catalysts -- 4.1.2 Copper‐Based Catalysts -- 4.1.2.1 Dihydropyrimidinones by Cu‐Based Catalysts -- 4.1.2.2 Dihydroquinazolinones by Cu‐Based Catalysts -- 4.1.3 Misalliances Metal‐Based Catalysts -- 4.2 Microwave‐Assisted Reactions -- 4.2.1 Solid Acid and Base Catalysts -- 4.2.1.1 Condensation Reactions -- 4.2.1.2 Cyclization Reactions -- 4.2.1.3 Multi‐component Reactions -- 4.2.1.4 Friedel-Crafts Reactions -- 4.2.1.5 Reaction Involving Catalysts of Biological Origin -- 4.2.1.6 Reduction -- 4.2.1.7 Oxidation -- 4.2.1.8 Coupling Reactions -- 4.2.1.9 Micelliances Reactions -- 4.2.1.10 Click Chemistry -- 4.3 Conclusion -- Acknowledgments -- References -- Chapter 5 Microwave‐ and Ultrasonic‐Assisted Coupling Reactions -- 5.1 Introduction -- 5.2 Microwave -- 5.2.1 Microwave‐Assisted Coupling Reactions -- 5.2.2 Ultrasound‐Assisted Coupling Reactions -- 5.3 Conclusion -- References -- Chapter 6 Synthesis of Heterocyclic Compounds Under Microwave Irradiation Using Name Reactions -- 6.1 Introduction -- 6.2 Classical Methods for Heterocyclic Synthesis Under Microwave Irradiation -- 6.2.1 Piloty-Robinson Pyrrole Synthesis -- 6.2.2 Clauson-Kaas Pyrrole Synthesis -- 6.2.3 Paal-Knorr Pyrrole Synthesis -- 6.2.4 Paal-Knorr Furan Synthesis -- 6.2.5 Paal-Knorr Thiophene Synthesis -- 6.2.6 Gewald Reaction -- 6.2.7 Fischer Indole Synthesis -- 6.2.8 Bischler-Möhlau Indole Synthesis -- 6.2.9 Hemetsberger-Knittel Indole Synthesis -- 6.2.10 Leimgruber-Batcho Indole Synthesis -- 6.2.11 Cadogan-Sundberg Indole Synthesis -- 6.2.12 Pechmann Pyrazole Synthesis -- 6.2.13 Debus-Radziszewski Reaction -- 6.2.14 van Leusen Imidazole Synthesis -- 6.2.15 van Leusen Oxazole Synthesis. 6.2.16 Robinson-Gabriel Reaction -- 6.2.17 Hantzsch Thiazole Synthesis -- 6.2.18 Einhorn-Brunner Reaction -- 6.2.19 Pellizzari Reaction -- 6.2.20 Huisgen Reaction -- 6.2.21 Finnegan Tetrazole Synthesis -- 6.2.22 Four‐component Ugi‐azide Reaction -- 6.2.23 Kröhnke Pyridine Synthesis -- 6.2.24 Bohlmann-Rahtz Pyridine Synthesis -- 6.2.25 Boger Reaction -- 6.2.26 Skraup Reaction -- 6.2.27 Gould-Jacobs Reaction -- 6.2.28 Friedländer Quinoline Synthesis -- 6.2.29 Povarov Reaction -- 6.3 Conclusion -- Acknowledgments -- References -- Chapter 7 Microwave‐ and Ultrasound‐Assisted Enzymatic Reactions -- 7.1 Introduction -- 7.2 Influence Microwave Radiation on the Stability and Activity of Enzymes -- 7.3 Principle of Ultrasonic‐Assisted Enzymolysis -- 7.4 Applications of Ultrasonic‐Assisted Enzymolysis -- 7.4.1 Proteins and Other Plant Components Can Be Transformed and Extracted -- 7.4.2 Modification of Protein Functionality -- 7.4.3 Enhancement of Biological Activity -- 7.4.4 Ultrasonic‐Assisted Acceleration of Hydrolysis Time -- 7.5 Enzymatic Reactions Supported by Ultrasound -- 7.5.1 Lipase -- 7.5.2 Protease -- 7.5.3 Polysaccharide Enzymes -- 7.6 Biodiesel Production via Ultrasound‐Supported Transesterification -- 7.6.1 Homogenous Acid‐Catalyzed Ultrasound‐Assisted Transesterification -- 7.6.2 Transesterification with Ultrasound Assistance and Homogenous Base Catalysis -- 7.6.3 Heterogeneous Acid‐Catalyzed Ultrasound‐Assisted Transesterification -- 7.6.4 Heterogeneous Base‐Catalyzed Ultrasound‐Assisted Transesterification -- 7.6.5 Enzyme‐Catalyzed Ultrasound‐Assisted Transesterification -- 7.7 Conclusions -- Acknowledgments -- References -- Chapter 8 Microwave‐ and Ultrasound‐Assisted Synthesis of Polymers -- 8.1 Introduction -- 8.2 Microwave‐Assisted Synthesis of Polymers -- 8.3 Ultrasound‐Assisted Synthesis of Polymers -- 8.4 Conclusion -- References. Chapter 9 Synthesis of Nanomaterials Under Microwave and Ultrasound Irradiation -- 9.1 Introduction -- 9.2 Synthesis of Metal Nanoparticles -- 9.3 Synthesis of Carbon Dots -- 9.4 Synthesis of Metal Oxides -- 9.5 Synthesis of Silicon Dioxide -- 9.6 Conclusion -- References -- Chapter 10 Microwave‐ and Ultrasound‐Assisted Synthesis of Metal‐Organic Frameworks (MOF) and Covalent Organic Frameworks (COF) -- 10.1 Introduction -- 10.2 Principles -- 10.2.1 Principles of Microwave Heating -- 10.2.2 Principle of Ultrasound‐Assisted Techniques -- 10.2.3 Advantages and Disadvantages of Microwave‐ and Ultrasound‐Assisted Techniques -- 10.3 MOF Synthesis by Microwave and Ultrasound Method -- 10.3.1 Microwave‐Assisted Synthesis of MOF -- 10.3.2 Ultrasound‐Assisted Synthesis of MOFs -- 10.4 Factors That Affect MOF Synthesis -- 10.4.1 Solvent -- 10.4.2 Temperature and pH -- 10.5 Application of MOF -- 10.6 COF Synthesis by Microwave and Ultrasound Method -- 10.6.1 Ultrasound‐Assisted Synthesis of COFs -- 10.6.2 Microwave‐Assisted Synthesis of COF -- 10.6.3 Structure of COF (2D and 3D) -- 10.7 Factors Affecting the COF Synthesis -- 10.8 Applications of COFs -- 10.9 Future Predictions -- 10.10 Summary -- Acknowledgments -- References -- Chapter 11 Solid Phase Synthesis Catalyzed by Microwave and Ultrasound Irradiation -- 11.1 Introduction -- 11.2 Wastewater Treatment -- 11.3 Biodiesel Production -- 11.4 Oxygen Reduction Reaction -- 11.5 Alcoholic Fuel Cells -- 11.6 Conclusion and Future Plans -- References -- Chapter 12 Comparative Studies on Thermal, Microwave‐Assisted, and Ultrasound‐Promoted Preparations -- 12.1 Introduction -- 12.1.1 Background on Preparative Techniques in Chemistry -- 12.1.2 Overview of Thermal, Microwave‐Assisted, and Ultrasound‐Promoted Preparations -- 12.1.3 Significance of Comparative Studies in Enhancing Synthetic Methodologies. 12.1.3.1 Optimization of Conditions -- 12.1.3.2 Efficiency Improvement -- 12.1.3.3 Methodological Advances -- 12.1.3.4 Sustainability and Green Chemistry -- 12.2 Fundamentals of Thermal, Microwave‐Assisted, and Ultrasound‐Assisted Reactions -- 12.2.1 Explanation of Thermal Reactions and Their Advantages and Limitations -- 12.2.2 Introduction to Microwave‐Assisted Reactions and How They Differ from Traditional Method -- 12.2.3 Understanding the Principles and Mechanisms of Ultrasound‐Promoted Reactions -- 12.3 Case Studies in Organic Synthesis -- 12.3.1 Examining Examples of Organic Reactions Performed Under Thermal Conditions -- 12.3.1.1 Esterification Reaction Under Thermal Conditions -- 12.3.1.2 Dehydration of Alcohols -- 12.3.1.3 Oxidation of Aldehydes to Carboxylic Acids Using Water -- 12.3.2 Case Studies Showcasing the Application of Microwave‐Assisted Reactions -- 12.3.2.1 Microwave‐Assisted C C Bond Formation -- 12.3.2.2 Microwave‐Assisted Cyclization -- 12.3.2.3 Microwave‐Assisted Dehydrogenation Reactions -- 12.3.2.4 Microwave‐Assisted Organic Synthesis -- 12.3.3 Highlighting Successful Instances of Ultrasound‐Promoted Organic Synthesis -- 12.3.3.1 Ultrasound‐Promoted in Organic Synthesis -- 12.3.3.2 Ultrasound‐Promoted Oxidations -- 12.3.3.3 Ultrasound‐Promoted Esterification -- 12.3.3.4 Ultrasound‐Promoted Cyclization -- 12.4 Scope and Limitations -- 12.4.1 Discussing the Applicability of Each Method to Different Reaction Types -- 12.4.2 Identifying the Limitations and Challenges Faced by Each Technique -- 12.4.3 Opportunities for Combining Approaches to Overcome Specific Limitations -- 12.5 Future Directions and Emerging Trends -- 12.5.1 Overview of Recent Advancements and Ongoing Research in Thermal, Microwave, and Ultrasound‐Assisted Preparations -- 12.5.1.1 Food Processing Technologies. 12.5.1.2 Chemical Routes to Materials: Thermal Oxidation of Graphite for Graphene Preparation. |
| Record Nr. | UNINA-9911019731103321 |
Verma Dakeshwar Kumar
|
||
| Newark : , : John Wiley & Sons, Incorporated, , 2024 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Green Deep Eutectic Solvents : Fundamentals and Applications in Green Chemistry
| Green Deep Eutectic Solvents : Fundamentals and Applications in Green Chemistry |
| Autore | Elyor Berdimurodov |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2025 |
| Descrizione fisica | 1 online resource (428 pages) |
| Altri autori (Persone) |
VermaChandrabhan
Mustansar HussainChaudhery |
| ISBN |
1-394-27214-6
1-394-27213-8 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9911035061003321 |
Elyor Berdimurodov
|
||
| Newark : , : John Wiley & Sons, Incorporated, , 2025 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Green Hydrogen
| Green Hydrogen |
| Autore | Labjar Najoua |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2025 |
| Descrizione fisica | 1 online resource (576 pages) |
| Disciplina | 665.81 |
| Altri autori (Persone) |
HajjajiSouad El
VermaChandrabhan DubeyShikha |
| ISBN |
1-394-35670-6
1-394-35669-2 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Green Hydrogen: Fundamentals, Properties, Classifications, Advantages and Challenges -- 1.1 Introduction -- 1.2 Physical and Chemical Properties -- 1.3 Technologies Used to Generate Green Hydrogen -- 1.3.1 Water Electrolysis -- 1.3.1.1 Alkaline Water Electrolysis -- 1.3.1.2 Anion Exchange Membrane (AEM) -- 1.3.1.3 Proton Exchange Membrane Water Electrolysis (PEMWE) -- 1.3.1.4 Solid Oxide Water Electrolysis (SOX) -- 1.3.2 Biomass Pyrolysis -- 1.3.3 Biomass Gasification -- 1.3.4 Steam Reforming of Bio-Feedstocks -- 1.3.5 Biological Process -- 1.3.5.1 Bio-Photolysis of Water -- 1.3.5.2 Photo-Fermentation -- 1.3.5.3 Dark Fermentation -- 1.4 Advantages of Green Hydrogen -- 1.5 Challenges of Green Hydrogen -- 1.6 Conclusion -- References -- Chapter 2 Fundamentals of Green Energy and the Significance of Green Hydrogen -- 2.1 Introduction -- 2.2 Types of Green Energy Sources -- 2.2.1 Hydropower -- 2.2.2 Biomass Energy -- 2.2.3 Solar Energy -- 2.2.4 Wind Energy -- 2.2.5 Geothermal Energy -- 2.3 The Role of Green Energy in Mitigating Climate Change -- 2.4 Green Energy and Green Hydrogen -- 2.5 Green Hydrogen as a Sustainable Energy -- 2.5.1 Green Hydrogen Production by Water Electrolysis Technique -- 2.5.2 Environmental Benefits of Green Hydrogen -- 2.6 Technological and Economic Challenges in Green Energy -- 2.7 Policy and Regulatory Challenges in Green Energy -- 2.8 Technological and Economic Challenges in Green Hydrogen -- 2.9 Conclusion -- References -- Chapter 3 Green Hydrogen and Green Energy Fundamentals and Relative Description -- 3.1 Introduction -- 3.2 Hydrogen Production -- 3.2.1 Production of Hydrogen's Green -- 3.2.1.1 Green Hydrogen Generation Methods: Principles and Required Materials -- 3.2.2 Production's Cost -- 3.3 Green Energy Fundamentals.
3.3.1 Solar Energy -- 3.3.1.1 Photovoltaic -- 3.3.2 Wind Power Plants -- 3.3.2.1 Advantages -- 3.3.2.2 Disadvantages -- 3.3.3 Other Renewable Energy Sources -- 3.3.3.1 Biomass Power Plants -- 3.3.3.2 Geothermal Power -- 3.3.3.3 Hydro Power Plants -- 3.4 Integration of Green Hydrogen in the Energy Ecosystem -- 3.4.1 Hydrogen as a Renewable Energy Resource -- 3.4.1.1 Production Capacity of Hydrogen and Market -- 3.4.1.2 Applications of Hydrogen -- 3.4.2 Energy Storage -- 3.5 Assessment of the Environment and Economy -- 3.5.1 Environment -- 3.5.2 Economic -- 3.6 Conclusion -- References -- Chapter 4 Green Hydrogen Production: Relative Challenges and Opportunities of Different Method -- 4.1 Introduction -- 4.2 Fundamentals of Green Hydrogen Production -- 4.2.1 Electrolysis Processes -- 4.2.2 Renewable Energy Sources for Electrolysis -- 4.3 Technological Advancements in Green Hydrogen Production -- 4.3.1 Alkaline Electrolyzers -- 4.3.2 PEM Electrolyzers -- 4.3.3 Solid Oxide Electrolysis Cells -- 4.3.4 Comparison of Green Hydrogen Production Technologies -- 4.4 Economic and Policy Considerations -- 4.4.1 Cost Analysis of Green Hydrogen Production -- 4.4.2 Government Incentives and Regulations -- 4.5 Economic and Environmental Benefits of Green Hydrogen -- 4.6 Challenges in Green Hydrogen Production -- 4.6.1 Cost -- 4.6.1.1 Capital Cost -- 4.6.2 Efficiency -- 4.6.3 Scale-Up -- 4.7 Policy and Regulatory Frameworks -- 4.8 Case Studies of Successful Green Hydrogen Projects -- 4.9 Prospects and Market Trends -- 4.10 Conclusion -- References -- Chapter 5 Social and Environmental Challenges of Green Hydrogen -- 5.1 Introduction -- 5.1.1 Green Hydrogen -- 5.1.2 From Hues to Emanation -- Color Labeling of Hydrogen -- 5.1.2.1 Gray Hydrogen -- 5.1.2.2 Turquoise Hydrogen -- 5.1.2.3 Blue Hydrogen -- 5.1.2.4 Purple Hydrogen -- 5.1.2.5 White Hydrogen. 5.1.2.6 Green Hydrogen -- 5.2 Literature Survey -- 5.3 Eco-Friendly Techniques for Producing Hydrogen -- 5.3.1 Thermochemical Routes -- 5.3.1.1 Pyrolysis -- 5.3.1.2 Gasification -- 5.3.1.3 Biomass Pyrolysis -- 5.3.1.4 Steam Reforming of Natural Gas -- 5.3.2 Biological Mechanism or Biochemical Transformation -- 5.3.2.1 Bio-Photolysis -- 5.3.2.2 Fermentations -- 5.3.2.3 Water Splitting Techniques -- 5.4 Challenges -- 5.4.1 Social Challenges -- 5.4.1.1 Social Acceptance -- 5.4.1.2 Affordability -- 5.4.1.3 Education and Awareness -- 5.4.1.4 Public Acceptability and Safety -- 5.4.1.5 Law and Policies -- 5.4.1.6 Higher Expenses -- 5.4.2 Environmental Challenges -- 5.4.2.1 Diminution of Carbon Footprint -- 5.4.2.2 Enhancing Air Quality -- 5.4.2.3 Water Conservation -- 5.4.2.4 Waste Supervision -- 5.4.2.5 Sustainable Fuel Production -- 5.5 Conclusions and Future Recommendations -- References -- Chapter 6 Industrial Scale Challenges of Production and Consumption of Green Hydrogen -- 6.1 Introduction -- 6.2 Social Challenges -- 6.2.1 Public Acceptance -- 6.2.2 Job Creation -- 6.3 Environmental Challenges -- 6.3.1 Carbon Emissions -- 6.3.2 Water Usage -- 6.3.3 Land Use -- 6.4 Policy and Regulatory Challenges -- 6.4.1 Transition and Infrastructure -- 6.4.2 Policy Design -- 6.4.3 Regulatory and Legislative Conditions -- 6.5 Social and Environmental Benefits -- 6.5.1 Environmental Benefits -- 6.5.2 Socio-Economic Benefits -- 6.6 Conclusion -- References -- Chapter 7 Seawater as an Alternative Source for Hydrogen Production -- 7.1 Introduction -- 7.2 Production of Hydrogen from Freshwater -- 7.2.1 Electrolysis Process -- 7.2.2 Renewable Energy-Assisted Production of Hydrogen -- 7.2.3 Electrolysis Technologies Adopted -- 7.2.3.1 Alkaline Electrolysis -- 7.2.3.2 Proton Exchange Membrane PEM -- 7.2.3.3 High-Temperature Electrocatalysts (SORC). 7.3 Hydrogen Production and Water Scarcity -- 7.4 Hydrogen from Seawater -- 7.4.1 Effects of Chloride Ion -- 7.5 Electrocatalysts for OER -- 7.5.1 Metal Oxides -- 7.5.2 Hydroxide Catalysts -- 7.5.3 Metal Phosphides for OER -- 7.5.4 Metal Nitrides for OER -- 7.5.5 Metal Borides for OER -- 7.5.6 Hybrid Electrocatalysts for OER -- 7.6 Electrocatalysts for HER -- 7.6.1 Noble Metal Alloy Electrocatalysts for HER -- 7.6.2 Carbon-Supported Noble Metals for HER -- 7.6.3 MXene-Based Complexes for HER -- 7.6.4 Metal Phosphides for HER -- 7.6.5 Metal Oxides and Hydroxides for HER -- 7.6.6 Metal Nitrides for HER -- 7.6.7 Hybrid Electrocatalysts for HER -- 7.7 Conclusion -- References -- Chapter 8 Green Hydrogen Investments and Financing: Public and Government Investments -- 8.1 Introduction -- 8.2 Financing Sources for Green Hydrogen Projects -- 8.3 Analysis of Factors Driving Investor Attraction to Green Hydrogen -- 8.4 Current State of Investment in Green Hydrogen -- 8.5 Opportunities and Challenges in Financing Green Hydrogen -- 8.6 Conclusion and Perspectives -- References -- Chapter 9 Future of Green Hydrogen: Opportunities and Challenges -- 9.1 Introduction -- 9.2 Green Hydrogen -- 9.3 Opportunities and Challenges for the Future of Green Hydrogen -- 9.3.1 Opportunities for Industry and the Economy -- 9.3.2 Challenges for the Development of Green Hydrogen -- 9.4 Conclusion and Perspectives -- References -- Chapter 10 Green Hydrogen Production at Industrial Scale: Future Challenges and Opportunities -- 10.1 Introduction -- 10.2 Opportunities and Challenges of Green Hydrogen -- 10.2.1 Transportation and Storage Technologies for Green Hydrogen -- 10.2.2 Compressed Hydrogen Storage -- 10.2.2.1 Physical Storage with Storage Containers -- 10.2.2.2 Geological Storage -- 10.2.3 Liquid Hydrogen -- 10.2.4 Ammonia as Green Hydrogen Carrier. 10.2.5 Hydrogen Blending in Pipes for Natural Gas -- 10.3 Conclusion -- References -- Chapter 11 Significant Projects in Production, Storage and Applications of Green Hydrogen Around the World -- 11.1 Introduction to Green Hydrogen Projects -- 11.2 Green Hydrogen Production Projects Around the World -- 11.2.1 Green Hydrogen Production Potential Worldwide -- 11.2.2 Projects Around the World -- 11.2.2.1 Fukushima Hydrogen Energy Research Field (FH2R) -- 11.2.2.2 RESelyser Project -- 11.2.2.3 MEDLYS Project -- 11.2.2.4 ELYGRID Project -- 11.2.2.5 The Hydrogen Office Project -- 11.2.2.6 Wind2hydrogen W2H Project -- 11.2.2.7 Sinopec Zhongyuan Oilfield EOR Project -- 11.2.3 Morocco's Strategy and Its Flagship Green Hydrogen Production Projects -- 11.3 Global Projects for Storing Green Hydrogen -- 11.3.1 Compressed Gas Storage of Hydrogen -- 11.3.1.1 Underground Hydrogen Storage -- 11.3.1.2 Underground Storage in Aquifers -- 11.3.1.3 Underground Storage in Salt Caverns -- 11.3.2 Liquid Hydrogen Storage -- 11.3.2.1 NASA's Kennedy Space Center -- 11.3.2.2 Japan - Australia Partner to Produce Liquid Hydrogen -- 11.3.2.3 Linde Engineering -- 11.3.2.4 BMW Hydrogen -- 11.3.2.5 Hydrogen Storage Using Chemical Hydrides -- 11.3.2.6 Hydrogenous GmbH -- 11.3.2.7 Framatome -- 11.3.2.8 HySA Infrastructure, South Africa -- 11.3.3 Solid State Hydrogen Storage -- 11.3.3.1 GRZ Technologies -- 11.3.3.2 McPhy Energy -- 11.4 Applications of Green Hydrogen in Various Sectors -- 11.4.1 Applications in the Transportation Sector -- 11.4.1.1 Hy2Haul Project -- 11.4.1.2 HyTransit Project -- 11.4.1.3 NamX Project -- 11.4.1.4 Hyship Project -- 11.4.1.5 H2Ports Project -- 11.4.2 Applications in the Industrial Sector -- 11.4.2.1 Ammonia Production Application -- 11.4.2.2 Haldor Topsoe Green Ammonia Project -- 11.4.2.3 HEVO Ammonia Morocco Project -- 11.4.3 Steel Production Applications. 11.4.3.1 H2FUTURE Project. |
| Record Nr. | UNINA-9911038525703321 |
Labjar Najoua
|
||
| Newark : , : John Wiley & Sons, Incorporated, , 2025 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Industrial Corrosion : Fundamentals, Failure, Analysis and Prevention
| Industrial Corrosion : Fundamentals, Failure, Analysis and Prevention |
| Autore | Zehra Saman |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2025 |
| Descrizione fisica | 1 online resource (0 pages) |
| Disciplina | 620.11223 |
| Altri autori (Persone) |
AslamRuby
MobinMohammad VermaChandrabhan |
| ISBN |
1-394-30156-1
1-394-30155-3 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Corrosion Fundamentals: Understanding the Science Behind the Damage -- 1.1 Introduction -- 1.2 Types of Corrosion -- 1.2.1 Uniform Corrosion -- 1.2.2 Pitting Corrosion -- 1.2.3 Crevice Corrosion -- 1.2.4 Galvanic Corrosion -- 1.2.5 Intergranular Corrosion -- 1.2.6 Stress Corrosion Cracking (SCC) -- 1.2.7 Erosion Corrosion -- 1.2.8 Corrosion Fatigue -- 1.2.9 Microbiologically Influenced Corrosion (MIC) -- 1.2.10 Hydrogen Embrittlement -- 1.3 Corrosive Environments -- 1.4 Consequences of Corrosion -- 1.5 Corrosion Monitoring in Industrial Environments -- 1.5.1 Physical Examination -- 1.5.2 Exposure Coupons and Electrical Resistance Probes -- 1.5.3 Thin-Layer Activation -- 1.6 Conclusion -- Acknowledgment -- References -- Chapter 2 Types of Industrial Corrosive Environments -- 2.1 Introduction -- 2.2 Specific Types of Industrial Corrosive Environments -- 2.2.1 Atmospheric Corrosive Environments -- 2.2.1.1 Classification of Atmospheric Corrosion -- 2.2.1.2 Parameters Affecting Atmospheric Corrosion -- 2.2.2 Chemical Corrosive Environments -- 2.2.3 Forms of Corrosion -- 2.2.4 Factors Affecting Corrosion -- 2.2.5 Methods of Corrosion Protection -- 2.2.6 Microbiologically Influenced Corrosion (MIC) -- 2.2.7 Microorganisms Found in Gas and Oil -- 2.2.7.1 Microbes Associated with Microbiologically Influenced Corrosion -- 2.2.7.2 Sulfate-Reducing Bacteria -- 2.2.7.3 Iron-Reducing Bacteria -- 2.2.7.4 Sulfur-Oxidizing Bacteria -- 2.2.8 Mechanisms of Microbiologically Influenced Corrosion -- 2.2.8.1 Depolarization of the Cathode by Hydrogenase -- 2.2.8.2 The Anodic Depolarization Mechanism -- 2.3 Conclusion -- References -- Chapter 3 Corrosion in the Oil and Gas Industry -- 3.1 Introduction -- 3.2 Agents of Corrosion in Oil and Gas Industry.
3.3 Types of Corrosion in Oil and Gas Industry -- 3.3.1 Sweet Corrosion -- 3.3.2 Sour Corrosion -- 3.3.3 Microbiologically Induced Corrosion -- 3.3.4 Erosion-Corrosion -- 3.3.5 Crevice Corrosion -- 3.4 Effects of Corrosion on the Oil and Gas Industry -- 3.5 Corrosion Prevention in the Oil and Gas Industry -- 3.6 Challenges and Future Breakthroughs -- 3.7 Conclusion -- References -- Chapter 4 Corrosion in the Marine and Offshore Industry -- 4.1 Introduction -- 4.2 Marine and Offshore Area -- 4.2.1 Seawater Composition -- 4.2.2 Effect of Temperature -- 4.2.3 Microbial Effect -- 4.3 Offshore Structure -- 4.4 Types of Corrosion -- 4.4.1 Uniform Corrosion -- 4.4.2 Pitting Corrosion -- 4.4.3 Crevice Corrosion -- 4.4.4 Galvanic Corrosion -- 4.4.5 Erosion-Corrosion -- 4.4.6 Stress Corrosion Cracking -- 4.4.7 Microbial Corrosion -- 4.5 Corrosion-Inhibition System -- 4.5.1 Cathodic Protection -- 4.5.2 Protective Coating -- 4.5.3 Alloy Selection -- 4.5.4 Design Modification -- 4.6 Challenges and Conclusion -- 4.6.1 Trends in Corrosion Research -- 4.6.2 Corrosion Management -- References -- Chapter 5 Corrosion in the Power Plant Industry -- Abbreviations -- 5.1 Introduction -- 5.2 Types of Corrosion -- 5.2.1 Uniform Corrosion -- 5.2.2 Erosion Corrosion -- 5.2.3 Galvanic Corrosion -- 5.2.4 Crevice Corrosion -- 5.2.5 Stress Corrosion -- 5.3 Corrosion in Thermal Power Plant -- 5.4 Causes of Corrosion -- 5.4.1 Salt -- 5.4.2 Humidity -- 5.4.3 Extreme Temperatures -- 5.4.4 Industrial Lubricants -- 5.4.5 Surface Moisture -- 5.4.6 Airborne Particles -- 5.5 Corrosion in the Electricity Generation Sector -- 5.5.1 Corrosion of Heat Exchanger Materials in Co-Combustion Thermal Power Plants -- 5.5.1.1 Sulfur -- 5.5.1.2 Chlorine -- 5.5.1.3 H2O -- 5.5.1.4 O2 -- 5.5.1.5 CO2 -- 5.5.1.6 Temperature -- 5.5.1.7 The Corrosion Mechanism in Thermal Power Plants. 5.5.2 Factors Contributing to Thermal Energy Storage System Corrosion in Concentrated Solar Power Plants -- 5.5.2.1 Hot Corrosion -- 5.5.2.2 Localized Corrosion -- 5.5.2.3 Mechanically Assisted Corrosion -- 5.5.2.4 Flow-Accelerated Corrosion -- 5.5.3 Corrosion of Nuclear Metallic Materials -- 5.6 Measures to Prevent Corrosion -- 5.6.1 By Surface Coating -- 5.6.2 Through Joining Metal with Additional Electropositive Metal -- 5.6.3 Through Developing a Layer of Insoluble Phosphate or Chromate -- 5.7 Conclusion and Future Research Directions -- References -- Chapter 6 Corrosion in the Chemical Processing Industry -- 6.1 Introduction -- 6.2 Types of Corrosion in the Chemical Processing Industry -- 6.2.1 General Corrosion -- 6.2.2 Localized Corrosion -- 6.2.3 Environmental Cracking -- 6.3 Corrosion Mechanisms in Chemical Processes -- 6.4 Corrosion Control and Prevention -- 6.5 Monitoring and Inspection Techniques -- 6.6 Future Trends and Research Directions -- 6.7 Conclusions -- References -- Chapter 7 Chemical Processing Industry: Corrosion Dynamics and Prevention Techniques -- 7.1 Introduction -- 7.2 Corrosive Materials Within the Chemical Processing Industry -- 7.2.1 Chemical Processing Corrosion -- 7.2.1.1 Chlorine -- 7.2.1.2 Bromine -- 7.2.1.3 Hydrochloric Acid -- 7.2.1.4 Sulfuric Acid -- 7.2.1.5 Ammonia -- 7.2.1.6 Hydrogen -- 7.2.1.7 Oxygen -- 7.3 Corrosion in Specific Industries -- 7.3.1 Nuclear Power Corrosion -- 7.3.1.1 Food and Beverage Corrosion -- 7.4 Conclusion -- 7.5 Future Perspectives -- Acknowledgment -- References -- Chapter 8 Corrosion in the Food and Beverage Industry -- 8.1 Introduction -- 8.2 Corrosive Environment in Food Industry -- 8.3 Various Metals Used in Food Industry and Their Corrosion Phenomenon -- 8.3.1 Corrosion of Steel -- 8.3.2 Corrosion of Stainless Steel (SS) -- 8.3.3 Corrosion of Aluminum -- 8.3.4 Corrosion of Copper. 8.3.5 Corrosion of Other Metals -- 8.4 Corrosion-Related Contamination Incidents -- 8.5 Types of Corrosion in the Food Industry -- 8.6 Factors Affecting Corrosion in Food Industry -- 8.7 Corrosion of Metals: A Literature Survey -- 8.8 Effective Corrosion Prevention -- 8.9 Challenges and Emerging Technologies for Corrosion Prevention -- 8.10 Conclusion -- Acknowledgments -- References -- Chapter 9 Corrosion and Corrosion Inhibition in the Pulp and Paper Industry -- 9.1 Introduction -- 9.2 Liquids Generated in Paper and Pulp Industry -- 9.3 Corrosion Inhibition in Paper and Pulp Industry -- 9.4 Conclusion -- References -- Chapter 10 Corrosion in the Aerospace Industry -- 10.1 Introduction -- 10.2 Factors Influencing Corrosion Susceptibility -- 10.2.1 Material Selection and Composition -- 10.2.2 Environmental Conditions -- 10.2.3 Operational Stresses -- 10.3 Types of Corrosion in Aerospace Applications -- 10.3.1 Atmospheric Corrosion -- 10.3.2 Galvanic Corrosion -- 10.3.3 Stress Corrosion Cracking -- 10.3.4 Corrosion Fatigue -- 10.4 State-of-the-Art Corrosion Mitigation Strategies -- 10.4.1 Protective Coatings -- 10.4.2 Corrosion-Resistant Alloys -- 10.4.3 Advanced Surface Treatments -- 10.4.4 Corrosion Monitoring Techniques -- 10.5 Challenges and Future Outlooks -- 10.6 Conclusion -- References -- Chapter 11 Corrosion in the Automotive Industry -- 11.1 Introduction -- 11.2 Types of Corrosion in the Automotive Industry -- 11.3 Corrosion Mechanisms -- 11.4 Influencing Factors -- 11.5 Protection Methods -- 11.6 Future Trends -- 11.7 Conclusion -- References -- Chapter 12 Corrosion Failures in the Nuclear Power Plant -- 12.1 Corrosion Phenomena in Nuclear Technology -- 12.2 Corrosion in Water-Cooled Reactors -- 12.3 Corrosion in Helium-Cooled Reactors -- 12.4 Corrosion in Molten Salt and Liquid Metal-Cooled Reactors -- 12.5 Stress Corrosion Cracking (SCC). 12.5.1 Mechanisms of SCC -- 12.5.2 Types of SCC -- 12.5.3 Factors Influencing SCC -- 12.6 Flow-Accelerated Corrosion (FAC) -- 12.6.1 Historical Perspective -- 12.6.2 Mechanisms of FAC -- 12.6.3 Characteristics of FAC -- 12.6.4 Conditions Prone to FAC -- 12.7 Corrosion Effects in NPP Aspect -- 12.8 Corrosion Monitoring in Nuclear Power Plants -- 12.8.1 Importance of Corrosion Monitoring -- 12.8.2 Research Into Detection Techniques -- 12.8.3 In Situ Monitoring Developments -- 12.8.4 Future Challenges and Outlook -- 12.8.5 Limitations of Current Monitoring Methods -- 12.8.6 Online Ultratrace Analysis Solution -- 12.9 Corrosion Mitigation in Nuclear Power Plants -- 12.9.1 Corrosion Inhibitors -- 12.9.2 Stress Corrosion Cracking (SCC) -- 12.9.3 Irradiation-Assisted Stress Corrosion Cracking (IASCC) -- 12.9.4 Pressurized Water Stress Corrosion Cracking (PWSCC) -- 12.9.5 Intergranular Stress Corrosion Cracking (IGSCC) -- 12.9.6 Flow-Accelerated Corrosion (FAC) -- 12.9.7 Crud-Induced Localized Corrosion (CILC) -- 12.9.8 Microbial-Induced Corrosion (MIC) -- 12.10 Conclusion -- References -- Chapter 13 Corrosion Monitoring and Inspection Techniques in Industrial Environments -- 13.1 Introduction -- 13.2 Objectives of the Corrosion Monitoring -- 13.3 Elements of Corrosion Monitoring -- 13.4 Corrosion-Monitoring and Inspection Techniques -- 13.4.1 Coupon Technique: Overview and Assembly -- 13.4.2 Electrical Resistance (ER) Probes -- 13.4.2.1 Electrochemical Method -- 13.4.2.2 Field Signature Methods -- 13.4.2.3 Thin Layer Activation (TLA) -- 13.4.2.4 Chemical Analysis -- 13.4.2.5 Monitoring Hydrogen -- 13.4.2.6 Testing of Heat Exchangers and Spool Pieces -- 13.4.2.7 Monitoring of Bacteria -- 13.4.3 Data Management in Corrosion Inspection and Monitoring -- 13.5 Conclusion -- Acknowledgment -- References -- Index -- EULA. |
| Record Nr. | UNINA-9911019939903321 |
Zehra Saman
|
||
| Newark : , : John Wiley & Sons, Incorporated, , 2025 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Industrial Scale Inhibition : Principles, Design, and Applications
| Industrial Scale Inhibition : Principles, Design, and Applications |
| Autore | Yaagoob Ibrahim Yahia |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2024 |
| Descrizione fisica | 1 online resource (595 pages) |
| Disciplina | 660.28304 |
| Altri autori (Persone) | VermaChandrabhan |
| Soggetto topico |
Chemical engineering
Industrial water supply |
| ISBN |
9781394191185
9781394191178 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Title Page -- Copyright -- Contents -- About the Editors -- List of Contributors -- Preface -- Acknowledgments -- Chapter 1 Scales, Scaling, and Antiscalants: Fundamentals, Mechanisms, and Properties -- 1.1 Introduction -- 1.2 Scales -- 1.2.1 Calcium Carbonate -- 1.2.2 Calcium Sulfate -- 1.2.3 Calcium Phosphate -- 1.3 Scaling -- 1.3.1 Initiation -- 1.3.2 Transport Phenomenon -- 1.3.3 Adsorption Process -- 1.3.4 Removal -- 1.3.5 Aging -- 1.3.6 Supersaturation -- 1.3.7 Nucleation -- 1.3.8 Contact or Induction Period -- 1.4 Antiscalant/Chemical Treatment -- 1.5 Antiscalant Mechanism -- 1.6 Antiscalant in Industrial Water‐Circulating Systems -- 1.7 Antiscalants in Oilfield Environments -- 1.8 Overview of Some Plant‐derived and Organic‐based Antiscalants -- 1.9 Conclusion and Future Perspectives -- Acknowledgments -- References -- Chapter 2 Traditional and Eco‐friendly Antiscalants: Advantages and Disadvantages -- 2.1 Introduction -- 2.2 Formation and Hazards of Scale -- 2.2.1 Scale Inhibition Measures -- 2.2.2 Classification of Scale Inhibitors -- 2.2.2.1 Natural Scale Inhibitors -- 2.2.2.2 Polymer Scale Inhibitors -- 2.2.2.3 Eco‐friendly Scale Inhibitor -- 2.2.3 Scale Inhibition Mechanism -- 2.2.3.1 Complex Solubilization -- 2.2.3.2 Dispersion -- 2.2.3.3 Lattice Distortion -- 2.2.3.4 Dissolution Limit Effect -- 2.2.3.5 Strong Polar Group Action -- 2.2.3.6 Regenerative Self‐extrication Membrane Hypothesis -- 2.3 Advantages and Disadvantages of Traditional Impedance Agents -- 2.3.1 Scale Inhibitor for Phosphorus‐containing Polymers -- 2.3.2 Copolymer Scale Inhibitor -- 2.4 Advantages and Disadvantages of Environmentally Friendly Scale Inhibitors -- 2.4.1 PASP and PESA -- 2.4.2 Plant Extracts -- 2.4.3 Carbon Nanoparticle Scale Inhibitor -- 2.4.3.1 Carbon Nanoparticles -- 2.4.3.2 Carbon Nanotubes (CNTs) -- 2.4.3.3 Carbon Quantum Dots (CQDs).
2.5 Future Prospects and Challenges -- Acknowledgments -- Declaration of Competing Interest -- References -- Chapter 3 Electrochemistry Basics and Theory of Scaling in Various Electrolytes: Effect of pH and Other Parameters -- 3.1 Introduction to Electrochemistry -- 3.2 Fundamentals of Electrochemistry -- 3.2.1 Electrochemical Processes: Chemical-Electrical Interplay -- 3.2.2 Electrode Potentials and Their Significance -- 3.2.3 Nernst Equation: Linking Potential and Concentration -- 3.2.4 Faraday's Laws and Their Role in Quantitative Electrochemistry -- 3.2.5 Electrolysis Principles -- 3.3 Scaling Phenomena in Electrolytic Systems -- 3.3.1 Understanding Scaling and Its Multifaceted Effects -- 3.3.2 pH as a Key Driver of Scaling: Mechanisms and Implications -- 3.3.3 Temperature's Role in Scaling: Thermal Dynamics and Consequences -- 3.3.4 Impact of Ionic Strength on Scaling and Electrochemical Behavior -- 3.4 pH's Influence on Scaling and Electrochemical Processes -- 3.4.1 pH's Influence on Electrode Kinetics and Reaction Rates -- 3.4.2 pH's Influence on Reaction Rates -- 3.4.3 Proton Activity as a Determinant of Pace -- 3.4.4 The Nernst Equation: Linking pH and Electrode Potential -- 3.4.5 Ion Mobility Variations with pH and Their Electrochemical Consequences -- 3.4.6 pH‐Dependent Deposition Dynamics: Growth, Morphology, and Effects -- 3.5 Temperature and Ionic Strength Effects on Scaling -- 3.5.1 Thermal Variability and Scaling Phenomena -- 3.5.2 Role of Ionic Strength in Modulating Scaling -- 3.6 Electrode Material and Its Influence on Scaling -- 3.6.1 Electrode Materials: Selection, Properties, and Impacts -- 3.6.2 Material‐Induced Scaling Effects: Challenges and Solutions -- 3.7 Electrolyte Composition and Current Density: Scaling Implications -- 3.7.1 Electrode Materials: Selection, Properties, and Impacts. 3.7.2 Material‐Induced Scaling Effects: Challenges and Solutions -- 3.8 Integrative Understanding of Electrochemical Processes -- 3.8.1 Synthesizing Insights from pH, Temperature, and Key Parameters -- 3.8.2 Synergies and Interactions: A Holistic View of Scaling Phenomena -- 3.9 Conclusion and Future Prospects -- References -- Chapter 4 A Critical Review of Relative Scale Inhibition Performance of Different Alternatives -- 4.1 Introduction -- 4.1.1 Substoichiometric Antiscalants -- 4.1.2 Conventional Mechanisms of Antiscalant‐induced Scale Inhibition and Their Critical Evaluation -- 4.1.3 Nonconventional Hypothesis of Scale Inhibition Mechanism -- 4.1.4 Relative Scale Inhibitors Performance Assessment -- 4.1.5 Other Chemical Methods -- 4.1.6 Nonchemical Alternatives to Antiscalants -- 4.2 Concluding Remarks -- 4.3 Future Perspectives -- Acknowledgment -- References -- Chapter 5 Environmentally Acceptable Antiscalants and Their Hydrolytic Stability -- 5.1 Background of Scales and Antiscalants -- 5.1.1 Antiscalant or Scale Inhibitors -- 5.1.2 Phosphorus‐Based Antiscalants -- 5.1.3 Phosphorus‐Free Antiscalants -- 5.2 Hydrolytic Stability of Scales and Antiscalants -- 5.2.1 Scales -- 5.2.2 Antiscalants -- 5.3 Recent Developments for Environmentally Acceptable Antiscalants and Their Hydrolytic Stability -- 5.3.1 Natural Green Antiscalants -- 5.3.2 Environmentally Degradable Polymers -- 5.3.2.1 Oil and Gas Industries -- 5.3.2.2 Water Treatment Industries -- 5.4 Conclusion -- 5.5 Future Perspective -- Acknowledgements -- References -- Chapter 6 Assessment of Industrial Scale Inhibition: Experimental and Computational Approaches -- 6.1 Introduction -- 6.1.1 Oil and Gas Industry -- 6.1.2 Power Generation Industry -- 6.1.3 Water Treatment Industry -- 6.1.4 Food and Beverage Industry -- 6.1.5 Mining Industry -- 6.1.6 Chemical Industry. 6.2 Brief Overview of Experimental and Computational Approaches -- 6.2.1 Experimental Approaches -- 6.2.2 Computational Approaches -- 6.3 Experimental Approaches for Assessing Scale -- 6.4 Computational Approaches for Assessing Scale -- 6.5 Advantages and Disadvantages of Experimental and Computational Approaches -- 6.5.1 Advantages of Experimental Approaches -- 6.5.2 Disadvantages of Experimental Approaches -- 6.5.3 Advantages of Computational Approaches -- 6.5.4 Disadvantages of Computational Approaches -- 6.6 Challenges and Future Outlooks -- 6.7 Conclusion -- References -- Chapter 7 Recent Advancements Toward Phosphorus‐Free Scale Inhibitors: An Eco‐friendly Approach in Industrial Scale Inhibition -- 7.1 Introduction -- 7.2 Scale Inhibitors and Mechanism of Scale Inhibition -- 7.3 Advancements Toward Phosporous‐Free Scale Inhibitors -- 7.4 Summary -- 7.5 Future Perspective -- Acknowledgments -- References -- Chapter 8 Trends in Using Organic Compounds as Scale Inhibitors: Past, Present, and Future Scenarios -- 8.1 Introduction -- 8.2 Classification of Organic Scale Inhibitors -- 8.2.1 Carboxylic Acid Functional Groups of Scale Inhibitors -- 8.2.2 Organophosphorus‐Based Scale Inhibitors -- 8.3 Adsorption Mechanism of Organic Scale Inhibitors in the Oil and Gas Industry -- 8.4 Increasing the Effectiveness of Organic Scale Inhibitors -- 8.5 Technologies of Organic Scale Inhibitor Application in the Oil and Gas Industry -- 8.6 Future Perspective -- 8.7 Conclusion -- References -- Chapter 9 Organic Compounds as Scale Inhibitors -- 9.1 Introduction -- 9.2 Organic Compounds as Scale Inhibitors -- 9.2.1 Organophosphonic Acid as Scale Inhibitor -- 9.2.2 Effect of Functional Groups as Scale Inhibitors -- 9.2.2.1 Effect of Carboxyl Groups on the Performance of Scale Inhibitors. 9.2.2.2 The Effect of Sulfonic Acid Group on the Performance of Scale Inhibitors -- 9.2.2.3 The Effect of Hydroxyl Group on the Performance of Scale Inhibitors -- 9.3 New Green Scale Inhibitors -- 9.4 Synergistic Effect Between Functional Groups -- 9.5 Future Prospects and Challenges -- Acknowledgments -- Declaration of Competing Interest -- References -- Chapter 10 Plant Extracts as Scale Inhibitors -- 10.1 Introduction -- 10.2 Plant Extracts -- 10.3 Scale Inhibition Mechanism -- 10.3.1 The Solubilization of Chelation -- 10.3.2 Lattice Distortion -- 10.3.3 Adsorption, Coagulation, and Dispersion -- 10.3.4 Threshold -- 10.4 Plant Extracts to Prevent Carbonate Scale -- 10.5 Plant Extracts to Prevent Sulfate Scale -- 10.6 Future Prospects and Challenges -- Acknowledgments -- Declaration of Competing Interest -- References -- Chapter 11 Carbohydrates as Scale Inhibitors -- 11.1 Introduction -- 11.2 Carbohydrates as Scale Inhibitors -- 11.2.1 Cyclodextrin as Scale Inhibitors in Oilfields -- 11.2.2 Inhibitors of Green Scale Using Carboxymethyl Chitosan in Oil Wells -- 11.2.3 Scale‐Inhibiting Properties of Guar Galactomannan and Konjac Glucomannan -- 11.2.4 As Inhibitors of Green Scale, Guar, and Xanthan Gums -- 11.2.4.1 The Scale Inhibition Mechanism -- 11.2.5 Chitosan and Substituted/Modified Chitosan as Green Scale Inhibitors -- 11.3 Conclusion -- Abbreviations -- Author Contribution Statement -- References -- Chapter 12 Copolymers and Polymers as Scale Inhibitors -- 12.1 Introduction -- 12.2 Copolymer Scale Inhibitor -- 12.3 Polymer Scale Inhibitor -- 12.4 Future Prospects and Challenges -- Acknowledgments -- Declaration of Competing Interest -- References -- Chapter 13 Polymeric and Copolymeric Scale Inhibitors: Trends and Opportunities -- 13.1 Introduction -- 13.2 Copolymers -- 13.3 Polymers -- 13.4 Scale Formation -- 13.5 Scale Inhibitors. 13.6 Copolymers as Scale Inhibitors in Industrial Water‐Circulating Systems. |
| Record Nr. | UNINA-9911019164303321 |
Yaagoob Ibrahim Yahia
|
||
| Newark : , : John Wiley & Sons, Incorporated, , 2024 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Organic corrosion inhibitors : synthesis, characterization, mechanism, and applications / / edited by Chandrabhan Verma, Chaudhery Mustansar Hussain, Eno E. Ebenso
| Organic corrosion inhibitors : synthesis, characterization, mechanism, and applications / / edited by Chandrabhan Verma, Chaudhery Mustansar Hussain, Eno E. Ebenso |
| Pubbl/distr/stampa | Hoboken, New Jersey : , : Wiley, , [2022] |
| Descrizione fisica | 1 online resource (525 pages) |
| Disciplina | 620.11223 |
| Soggetto topico |
Corrosion and anti-corrosives
Corrosion and anti-corrosives - Environmental aspects |
| Soggetto genere / forma | Electronic books. |
| ISBN |
1-119-79449-8
1-119-79451-X 1-119-79450-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910555076503321 |
| Hoboken, New Jersey : , : Wiley, , [2022] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Organic corrosion inhibitors : synthesis, characterization, mechanism, and applications / / edited by Chandrabhan Verma, Chaudhery Mustansar Hussain, Eno E. Ebenso
| Organic corrosion inhibitors : synthesis, characterization, mechanism, and applications / / edited by Chandrabhan Verma, Chaudhery Mustansar Hussain, Eno E. Ebenso |
| Pubbl/distr/stampa | Hoboken, New Jersey : , : Wiley, , [2022] |
| Descrizione fisica | 1 online resource (525 pages) |
| Disciplina | 620.11223 |
| Soggetto topico |
Corrosion and anti-corrosives
Corrosion and anti-corrosives - Environmental aspects |
| ISBN |
1-119-79449-8
1-119-79451-X 1-119-79450-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910830597803321 |
| Hoboken, New Jersey : , : Wiley, , [2022] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||