top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Carbon allotropes and composites : materials for environment protection and remediation / / edited by Chandrabhan Verma and Chaudhery Mustansar Hussain
Carbon allotropes and composites : materials for environment protection and remediation / / edited by Chandrabhan Verma and Chaudhery Mustansar Hussain
Pubbl/distr/stampa Hoboken, NJ ; Beverly, MA : , : John Wiley & Sons, Inc. : , : Scrivener Publishing LLC, , [2023]
Descrizione fisica 1 online resource (409 pages)
Disciplina 929.605
Soggetto topico Composite materials
Bioremediation - Materials
ISBN 1-394-16791-1
1-394-16790-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Preparation of Carbon Allotropes Using Different Methods -- Abbreviations -- 1.1 Introduction -- 1.2 Synthesis Methods -- 1.2.1 Synthesis of CNTs -- 1.2.1.1 Arc Discharge Method -- 1.2.1.2 Laser Ablation Method -- 1.2.1.3 Chemical Vapor Deposition (CVD) -- 1.2.1.4 Plasma-Enhanced CVD (PE-CVD) -- 1.2.2 Synthesis of CQDs -- 1.2.2.1 Arc Discharge -- 1.2.2.2 Laser Ablation -- 1.2.2.3 Acidic Oxidation -- 1.2.2.4 Combustion/Thermal Routes -- 1.2.2.5 Microwave Pyrolysis -- 1.2.2.6 Electrochemistry Method -- 1.2.2.7 Hydrothermal/Solvothermal Synthesis -- 1.3 Conclusions -- References -- Chapter 2 Carbon Allotrope Composites: Basics, Properties, and Applications -- 2.1 Introduction -- 2.2 Allotropes of Carbon -- 2.3 Basics of Carbon Allotrope Composites and Their Properties -- 2.4 Composites of Graphite or Graphite Oxide (GO) -- 2.4.1 Applications of Graphite Oxide -- 2.5 Composites of Graphene -- 2.5.1 Applications of Graphene Oxide -- 2.6 Composite of Graphite-Carbon Nanotube (Gr-CNT)/Polythene or Silicon -- 2.6.1 Applications of Graphite-Carbon Nanotube (Gr-CNT)/Polythene or Silicon -- 2.7 Graphene (or Graphene Oxide)-Carbon Nanofiber (CNF) Composites -- 2.7.1 Applications of CNF Composites -- 2.8 Graphene-Fullerene Composites -- 2.8.1 Applications of Graphene-Fullerene Composites -- 2.9 Conclusion -- References -- Chapter 3 Activation of Carbon Allotropes Through Covalent and Noncovalent Functionalization: Attempts in Modifying Properties for Enhanced Performance -- 3.1 Introduction -- 3.1.1 Carbon Allotropes: Fundamentals and Properties -- 3.1.1.1 Graphite -- 3.1.1.2 Diamond -- 3.1.1.3 Graphene -- 3.1.1.4 Activated Carbon -- 3.1.1.5 Carbon Nanotubes and Fullerene -- 3.1.2 Functionalization of Carbon Allotropes: Synthesis and Characterization.
3.1.2.1 Covalent Functionalization of Carbon Allotropes: Synthesis and Characterization -- 3.1.2.2 Noncovalent Functionalization of Carbon Allotropes: Synthesis and Characterization -- 3.2 Applications of Functionalized Carbon Allotropes -- 3.2.1 Biomedical -- 3.2.2 Waste Treatment -- 3.2.3 Pollutants Decontamination -- 3.2.4 Anticorrosive -- 3.2.5 Tribological -- 3.2.6 Catalytic -- 3.2.7 Reinforced Materials -- 3.3 Conclusions and Future Directions -- References -- Chapter 4 Carbon Allotropes in Lead Removal -- 4.1 Introduction -- 4.2 Carbon Nanomaterials (CNMs) -- 4.3 Dimension-Based Types of Carbon Nanomaterials -- 4.4 Purification of Water Using Fullerenes -- 4.5 Application of Graphene and Its Derivatives in Water Purification -- 4.6 Application of Carbon Nanotubes (CNTs) in Water Purification -- 4.7 Conclusion -- References -- Chapter 5 Carbon Allotropes in Nickel Removal -- 5.1 Introduction -- 5.2 Carbon and Its Allotropes: As Remediation Technology for Ni -- 5.2.1 Nanotubes Based on Carbon -- 5.2.1.1 Overview -- 5.2.1.2 Features of CNTs -- 5.2.2 Fullerenes -- 5.2.3 Graphene -- 5.2.3.1 Overview -- 5.2.3.2 Properties -- 5.3 Removal of Ni in Wastewater by Use of Carbon Allotropes -- 5.3.1 Carbon Nanotubes for Ni Adsorption From Aqueous Solutions -- 5.3.2 Ni Adsorption From Aqueous Solutions on Composite Material of MWCNTs -- 5.3.3 GR and GO-Based Adsorbents for Removal of Ni -- 5.4 Conclusion -- References -- Chapter 6 Molybdenum-Modified Carbon Allotropes in Wastewater Treatment -- 6.1 Introduction -- 6.2 Carbon-Based Allotropes -- 6.2.1 Graphene -- 6.2.2 Graphite -- 6.2.3 Carbon Nanotubes -- 6.2.4 Glassy Carbon (GC) -- 6.3 Molybdenum Disulfide -- 6.3.1 Synthesis of MoS2 -- 6.3.2 Physical Methods -- 6.3.3 Chemical Methods -- 6.3.4 Properties -- 6.4 Application of MoS2 -- 6.4.1 Dye-Sensitized Solar Cells (DSSCs) -- 6.4.2 Catalyst.
6.4.3 Desalination -- 6.4.4 Lubrication -- 6.4.5 Sensor -- 6.4.6 Electroanalytical -- 6.4.7 Biomedical -- 6.5 Molybdenum-Modified Carbon Allotropes in Wastewater Treatment -- 6.6 Conclusion -- References -- Chapter 7 Carbon Allotropes in Other Metals (Cu, Zn, Fe etc.) Removal -- 7.1 Introduction -- 7.2 Carbon-Allotropes: Synthesis Methods, Applications and Future Perspectives -- 7.3 Reaffirmations of Heavy Metal Contaminations in Water and Their Toxic Effects -- 7.3.1 Copper -- 7.3.2 Zinc -- 7.3.3 Lead -- 7.3.4 Cadmium -- 7.3.5 Arsenic -- 7.4 Technology is Used to Treat Heavy Ions of Metal -- 7.4.1 Chemical Precipitation -- 7.4.2 Ion-Exchange -- 7.4.3 Adsorption -- 7.4.4 Membrane Filtration -- 7.4.5 Electrodialysis -- 7.4.6 Flotation -- 7.4.7 Electrochemical Treatment -- 7.4.8 Electroflotation -- 7.4.9 Coagulation and Flocculation -- 7.5 Factors Influencing How Heavy Metal Ions Adhere to CNTs -- 7.5.1 pH -- 7.5.2 Ionic Strength -- 7.5.3 CNT Dosage -- 7.5.4 Contact Time -- 7.5.5 Temperature -- 7.5.6 Thermodynamic Variables -- 7.5.7 CNT Regeneration -- 7.5.8 Isotherm Equation -- 7.5.9 Current Issues and the Need for Additional Study -- 7.6 Conclusions -- Acknowledgments -- References -- Chapter 8 Carbon Allotropes in Phenolic Compounds Removal -- 8.1 Introduction -- 8.2 Carbon Materials in Phenol Removal -- 8.2.1 Activated Carbon -- 8.2.2 Graphene -- 8.2.3 Carbon Nanotubes -- 8.2.4 Graphene Oxide and Reduced Graphene Oxide -- 8.2.5 Graphitic Carbon Nitride -- 8.2.6 Carbon Materials in the Biodegradation of Phenols -- 8.3 Conclusions -- References -- Chapter 9 Carbon Allotropes in Carbon Dioxide Capturing -- 9.1 Introduction -- 9.1.1 Importance of Carbon Allotropes in Carbon Dioxide Capturing -- 9.2 Main Part -- 9.2.1 Polymer-Based Carbon Allotropes in Carbon Dioxide Capturing.
9.2.2 Graphene-Aerogels-Based Carbon Allotropes in Carbon Dioxide Capturing -- 9.3 Functionalized Graphene-Based Carbon Allotropes in Carbon Dioxide Capturing -- 9.4 Conclusions -- References -- Chapter 10 Carbon Allotropes in Air Purification -- 10.1 Introduction -- 10.2 Historical and Chemical Properties of Some Designated Carbon-Based Allotropes -- 10.3 Structure and Characteristics of Carbon Allotropes -- 10.4 Uses of Carbon Nanotube Filters for Removal of Air Pollutants -- 10.5 Physicochemical Characterization of CNTs -- 10.6 TiO2 Nanofibers in a Simulated Air Purifier Under Visible Light Irradiation -- 10.7 Poly (Vinyl Pyrrolidone) (PVP) -- 10.8 VOCs -- 10.9 Heavy Metals -- 10.10 Particulate Matter (PM) -- 10.11 Techniques to Remove Air Pollutants and Improve Air Treatment Efficiency -- 10.12 Removal of NOX by Photochemical Oxidation Process -- 10.13 Chemically Adapted Nano-TiO2 -- 10.14 Alternative Nanoparticulated System -- 10.15 Photodegradation of NOX Evaluated for the ZnO-Based Systems -- 10.16 Synthesis and Applications of Carbon Nanotubes -- 10.17 Mechanism of Technologies -- 10.18 Conclusion -- References -- Chapter 11 Carbon Allotropes in Waste Decomposition and Management -- 11.1 Introduction -- 11.2 Management Methods for Waste -- 11.2.1 Landfilling -- 11.2.2 Incineration -- 11.2.3 Mechanical Recycling -- 11.2.3.1 Downcycling Method -- 11.2.3.2 Upcycling Method -- 11.3 Process of Pyrolysis: Waste Management to the Synthesis of Carbon Allotropes -- 11.4 Synthesis Methods to Produce Carbon-Based Materials From Waste Materials -- 11.4.1 Catalytic Pyrolysis -- 11.4.2 Batch Pyrolysis-Catalysis -- 11.4.3 CVD Method -- 11.4.4 Pyrolysis-Deposition Followed by CVD -- 11.4.5 Thermal Decomposition -- 11.4.6 Activation Techniques -- 11.4.6.1 Physical Activation Technique -- 11.4.6.2 Chemical Activation Technique.
11.5 Use of Waste Materials for the Development of Carbon Allotropes -- 11.5.1 Synthesis of CNTs Using Waste Materials -- 11.5.2 Synthesis of Graphene Using Waste Materials -- 11.6 Applications for Carbon-Based Materials -- 11.6.1 CNTs -- 11.6.2 Graphene -- 11.6.3 Activated Carbon -- 11.7 Conclusions -- References -- Chapter 12 Carbon Allotropes in a Sustainable Environment -- 12.1 Introduction -- 12.2 Functionalization of Carbon Allotropes -- 12.2.1 Covalent Functionalization -- 12.2.2 Noncovalent Functionalization -- 12.3 Developments of Carbon Allotropes and Their Applications -- 12.4 Carbon Allotropes in Sustainable Environment -- 12.5 Carbon Allotropes Purification Process in the Treatment of Wastewater -- 12.5.1 Fullerenes -- 12.5.2 Bucky Paper Membrane (BP) -- 12.5.3 Carbon Nanotubes (CNTs) -- 12.5.3.1 CNT Adsorption Mechanism -- 12.5.3.2 CNTs Ozone Method -- 12.5.3.3 CNTs-Fenton-Like Systems -- 12.5.3.4 CNTs-Persulfates Systems -- 12.5.3.5 CNTs-Ferrate/Permanganate Systems -- 12.5.4 Graphene -- 12.6 Removal of Various Pollutants -- 12.6.1 Arsenic -- 12.6.2 Drugs and Pharmaceuticals -- 12.6.3 Heavy Metals -- 12.6.4 Pesticides and Other Pest Controllers -- 12.6.5 Fluoride -- 12.7 Carbon Dioxide (CO2) Adsorption -- 12.8 Conclusion and Future Perspective -- References -- Chapter 13 Carbonaceous Catalysts for Pollutant Degradation -- 13.1 Introduction -- 13.2 Strategies to Develop Carbon-Based Material -- 13.3 Advantages of Carbon-Based Metal Nanocomposites -- 13.4 Methods for the Development of Carbon-Based Nanocomposites -- 13.5 Carbon-Based Photocatalyst -- 13.5.1 Fullerene (C60) -- 13.5.2 Carbon Nanotubes -- 13.5.3 Graphene -- 13.5.4 Graphitic Carbon Nitride (g-C3N4) -- 13.5.5 Diamond -- 13.6 Applications -- 13.6.1 Dye Degradation -- 13.6.2 Organic Transformation -- 13.6.3 NOx Removal -- 13.7 Factors Affecting Degradation -- 13.7.1 Radiation.
13.7.2 Exfoliation.
Record Nr. UNINA-9910830379103321
Hoboken, NJ ; Beverly, MA : , : John Wiley & Sons, Inc. : , : Scrivener Publishing LLC, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Grafted biopolymers as corrosion inhibitors : safety, sustainability, and efficiency / / edited by Jeenat Aslam, Chandrabhan Verma, and Ruby Aslam
Grafted biopolymers as corrosion inhibitors : safety, sustainability, and efficiency / / edited by Jeenat Aslam, Chandrabhan Verma, and Ruby Aslam
Pubbl/distr/stampa Hoboken, NJ : , : John Wiley & Sons, Inc., , [2023]
Descrizione fisica 1 online resource (496 pages)
Collana Wiley series in corrosion
Soggetto topico Biopolymers
Corrosion and anti-corrosives
ISBN 1-119-88139-0
1-119-88137-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Grafted Biopolymers as Corrosion Inhibitors -- Contents -- About the Editors -- List of Contributors -- Preface -- Part 1 Economic and Legal Issue of Corrosion -- 1 Corrosion: Basics, Economic Adverse Effects, and its Mitigation -- 2 Corrosion Inhibition: Past and Present Developments and Future Directions -- 3 Biopolymers as Corrosion Inhibitors: Relative Inhibition Potential of Biopolymers and Grafted Biopolymers -- 4 Biopolymers vs. Grafted Biopolymers: Challenges and Opportunities -- Part 2 Overview of Sustainable Grafted Biopolymers -- 5 Sustainable Grafted Biopolymers: Synthesis and Characterizations -- 6 Sustainable Grafted Biopolymers: Properties and Applications -- 7 Factors Affecting Biopolymers Grafting -- Part 3 Sustainable Grafted Biopolymers as Corrosion Inhibitors -- 8 Corrosion Inhibitors: Introduction, Classification and Selection Criteria -- 9 Methods of Corrosion Measurement: Chemical, Electrochemical, Surface, and Computational -- 10 Experimental and Computational Methods of Corrosion Assessment: Recent Updates on Concluding Remarks -- 11 Grafted Natural Gums Used as Sustainable Corrosion Inhibitors -- 12 Grafted Pectin as Sustainable Corrosion Inhibitors -- 13 Grafted Chitosan as Sustainable Corrosion Inhibitors -- 14 Grafted Starch Used as Sustainable Corrosion Inhibitors -- 15 Grafted Cellulose as Sustainable Corrosion Inhibitors -- 16 Sodium Alginate: Grafted Alginates as Sustainable Corrosion Inhibitors -- 17 Grafted Dextrin as a Corrosion Inhibitor -- 18 Grafted Biopolymer Composites and Nanocomposites as Sustainable Corrosion Inhibitors -- 19 Industrially Useful Corrosion Inhibitors: Grafted Biopolymers as Ideal Substitutes -- Index -- EULA.
Record Nr. UNINA-9910731598503321
Hoboken, NJ : , : John Wiley & Sons, Inc., , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Green Chemical Synthesis with Microwaves and Ultrasound
Green Chemical Synthesis with Microwaves and Ultrasound
Autore Verma Dakeshwar Kumar
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2024
Descrizione fisica 1 online resource (409 pages)
Altri autori (Persone) VermaChandrabhan
FuertesPaz Otero
ISBN 3-527-84447-3
3-527-84449-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- About the Editors -- Preface -- Chapter 1 Ultrasound Irradiation: Fundamental Theory, Electromagnetic Spectrum, Important Properties, and Physical Principles -- 1.1 Introduction -- 1.2 Cavitation History -- 1.2.1 Basics of Cavitation -- 1.2.2 Types of Cavitation -- 1.3 Application of Ultrasound Irradiation -- 1.3.1 Sonoluminescence and Sonophotocatalysis -- 1.3.2 Industrial Cleaning -- 1.3.3 Material Processing -- 1.3.4 Chemical and Biological Reactions -- 1.4 Conclusion -- Acknowledgments -- References -- Chapter 2 Fundamental Theory of Electromagnetic Spectrum, Dielectric and Magnetic Properties, Molecular Rotation, and the Green Chemistry of Microwave Heating Equipment -- 2.1 Introduction -- 2.1.1 Historical Background -- 2.1.2 Green Chemistry Principles for Sustainable System -- 2.2 Fundamental Concepts of the Electromagnetic Spectrum Theory -- 2.3 Electrical, Dielectric, and Magnetic Properties in Microwave Irradiation -- 2.4 Microwave Irradiation Molecular Rotation -- 2.5 Fundamentals of Electromagnetic Theory in Microwave Irradiation -- 2.5.1 Electromagnetic Radiations and Microwave -- 2.5.2 Heating Mechanism of Microwave: Conventional Versus Microwave Heating -- 2.6 Physical Principles of Microwave Heating and Equipment -- 2.7 Green Chemistry Through Microwave Heating: Applications and Benefits -- 2.8 Conclusion -- References -- Chapter 3 Conventional Versus Green Chemical Transformation: MCRs, Solid Phase Reaction, Green Solvents, Microwave, and Ultrasound Irradiation -- 3.1 Introduction -- 3.2 A Brief Overview of Green Chemistry -- 3.2.1 Definition and Historical Background -- 3.2.2 Significance -- 3.3 Multicomponent Reactions -- 3.4 Solid Phase Reactions -- 3.5 Microwave Induced Synthesis -- 3.6 Ultrasound Induced Synthesis -- 3.7 Green Chemicals and Solvents.
3.8 Conclusions and Outlook -- References -- Chapter 4 Metal‐Catalyzed Reactions Under Microwave and Ultrasound Irradiation -- 4.1 Ultrasonic Irradiation -- 4.1.1 Iron‐Based Catalysts -- 4.1.2 Copper‐Based Catalysts -- 4.1.2.1 Dihydropyrimidinones by Cu‐Based Catalysts -- 4.1.2.2 Dihydroquinazolinones by Cu‐Based Catalysts -- 4.1.3 Misalliances Metal‐Based Catalysts -- 4.2 Microwave‐Assisted Reactions -- 4.2.1 Solid Acid and Base Catalysts -- 4.2.1.1 Condensation Reactions -- 4.2.1.2 Cyclization Reactions -- 4.2.1.3 Multi‐component Reactions -- 4.2.1.4 Friedel-Crafts Reactions -- 4.2.1.5 Reaction Involving Catalysts of Biological Origin -- 4.2.1.6 Reduction -- 4.2.1.7 Oxidation -- 4.2.1.8 Coupling Reactions -- 4.2.1.9 Micelliances Reactions -- 4.2.1.10 Click Chemistry -- 4.3 Conclusion -- Acknowledgments -- References -- Chapter 5 Microwave‐ and Ultrasonic‐Assisted Coupling Reactions -- 5.1 Introduction -- 5.2 Microwave -- 5.2.1 Microwave‐Assisted Coupling Reactions -- 5.2.2 Ultrasound‐Assisted Coupling Reactions -- 5.3 Conclusion -- References -- Chapter 6 Synthesis of Heterocyclic Compounds Under Microwave Irradiation Using Name Reactions -- 6.1 Introduction -- 6.2 Classical Methods for Heterocyclic Synthesis Under Microwave Irradiation -- 6.2.1 Piloty-Robinson Pyrrole Synthesis -- 6.2.2 Clauson-Kaas Pyrrole Synthesis -- 6.2.3 Paal-Knorr Pyrrole Synthesis -- 6.2.4 Paal-Knorr Furan Synthesis -- 6.2.5 Paal-Knorr Thiophene Synthesis -- 6.2.6 Gewald Reaction -- 6.2.7 Fischer Indole Synthesis -- 6.2.8 Bischler-Möhlau Indole Synthesis -- 6.2.9 Hemetsberger-Knittel Indole Synthesis -- 6.2.10 Leimgruber-Batcho Indole Synthesis -- 6.2.11 Cadogan-Sundberg Indole Synthesis -- 6.2.12 Pechmann Pyrazole Synthesis -- 6.2.13 Debus-Radziszewski Reaction -- 6.2.14 van Leusen Imidazole Synthesis -- 6.2.15 van Leusen Oxazole Synthesis.
6.2.16 Robinson-Gabriel Reaction -- 6.2.17 Hantzsch Thiazole Synthesis -- 6.2.18 Einhorn-Brunner Reaction -- 6.2.19 Pellizzari Reaction -- 6.2.20 Huisgen Reaction -- 6.2.21 Finnegan Tetrazole Synthesis -- 6.2.22 Four‐component Ugi‐azide Reaction -- 6.2.23 Kröhnke Pyridine Synthesis -- 6.2.24 Bohlmann-Rahtz Pyridine Synthesis -- 6.2.25 Boger Reaction -- 6.2.26 Skraup Reaction -- 6.2.27 Gould-Jacobs Reaction -- 6.2.28 Friedländer Quinoline Synthesis -- 6.2.29 Povarov Reaction -- 6.3 Conclusion -- Acknowledgments -- References -- Chapter 7 Microwave‐ and Ultrasound‐Assisted Enzymatic Reactions -- 7.1 Introduction -- 7.2 Influence Microwave Radiation on the Stability and Activity of Enzymes -- 7.3 Principle of Ultrasonic‐Assisted Enzymolysis -- 7.4 Applications of Ultrasonic‐Assisted Enzymolysis -- 7.4.1 Proteins and Other Plant Components Can Be Transformed and Extracted -- 7.4.2 Modification of Protein Functionality -- 7.4.3 Enhancement of Biological Activity -- 7.4.4 Ultrasonic‐Assisted Acceleration of Hydrolysis Time -- 7.5 Enzymatic Reactions Supported by Ultrasound -- 7.5.1 Lipase -- 7.5.2 Protease -- 7.5.3 Polysaccharide Enzymes -- 7.6 Biodiesel Production via Ultrasound‐Supported Transesterification -- 7.6.1 Homogenous Acid‐Catalyzed Ultrasound‐Assisted Transesterification -- 7.6.2 Transesterification with Ultrasound Assistance and Homogenous Base Catalysis -- 7.6.3 Heterogeneous Acid‐Catalyzed Ultrasound‐Assisted Transesterification -- 7.6.4 Heterogeneous Base‐Catalyzed Ultrasound‐Assisted Transesterification -- 7.6.5 Enzyme‐Catalyzed Ultrasound‐Assisted Transesterification -- 7.7 Conclusions -- Acknowledgments -- References -- Chapter 8 Microwave‐ and Ultrasound‐Assisted Synthesis of Polymers -- 8.1 Introduction -- 8.2 Microwave‐Assisted Synthesis of Polymers -- 8.3 Ultrasound‐Assisted Synthesis of Polymers -- 8.4 Conclusion -- References.
Chapter 9 Synthesis of Nanomaterials Under Microwave and Ultrasound Irradiation -- 9.1 Introduction -- 9.2 Synthesis of Metal Nanoparticles -- 9.3 Synthesis of Carbon Dots -- 9.4 Synthesis of Metal Oxides -- 9.5 Synthesis of Silicon Dioxide -- 9.6 Conclusion -- References -- Chapter 10 Microwave‐ and Ultrasound‐Assisted Synthesis of Metal‐Organic Frameworks (MOF) and Covalent Organic Frameworks (COF) -- 10.1 Introduction -- 10.2 Principles -- 10.2.1 Principles of Microwave Heating -- 10.2.2 Principle of Ultrasound‐Assisted Techniques -- 10.2.3 Advantages and Disadvantages of Microwave‐ and Ultrasound‐Assisted Techniques -- 10.3 MOF Synthesis by Microwave and Ultrasound Method -- 10.3.1 Microwave‐Assisted Synthesis of MOF -- 10.3.2 Ultrasound‐Assisted Synthesis of MOFs -- 10.4 Factors That Affect MOF Synthesis -- 10.4.1 Solvent -- 10.4.2 Temperature and pH -- 10.5 Application of MOF -- 10.6 COF Synthesis by Microwave and Ultrasound Method -- 10.6.1 Ultrasound‐Assisted Synthesis of COFs -- 10.6.2 Microwave‐Assisted Synthesis of COF -- 10.6.3 Structure of COF (2D and 3D) -- 10.7 Factors Affecting the COF Synthesis -- 10.8 Applications of COFs -- 10.9 Future Predictions -- 10.10 Summary -- Acknowledgments -- References -- Chapter 11 Solid Phase Synthesis Catalyzed by Microwave and Ultrasound Irradiation -- 11.1 Introduction -- 11.2 Wastewater Treatment -- 11.3 Biodiesel Production -- 11.4 Oxygen Reduction Reaction -- 11.5 Alcoholic Fuel Cells -- 11.6 Conclusion and Future Plans -- References -- Chapter 12 Comparative Studies on Thermal, Microwave‐Assisted, and Ultrasound‐Promoted Preparations -- 12.1 Introduction -- 12.1.1 Background on Preparative Techniques in Chemistry -- 12.1.2 Overview of Thermal, Microwave‐Assisted, and Ultrasound‐Promoted Preparations -- 12.1.3 Significance of Comparative Studies in Enhancing Synthetic Methodologies.
12.1.3.1 Optimization of Conditions -- 12.1.3.2 Efficiency Improvement -- 12.1.3.3 Methodological Advances -- 12.1.3.4 Sustainability and Green Chemistry -- 12.2 Fundamentals of Thermal, Microwave‐Assisted, and Ultrasound‐Assisted Reactions -- 12.2.1 Explanation of Thermal Reactions and Their Advantages and Limitations -- 12.2.2 Introduction to Microwave‐Assisted Reactions and How They Differ from Traditional Method -- 12.2.3 Understanding the Principles and Mechanisms of Ultrasound‐Promoted Reactions -- 12.3 Case Studies in Organic Synthesis -- 12.3.1 Examining Examples of Organic Reactions Performed Under Thermal Conditions -- 12.3.1.1 Esterification Reaction Under Thermal Conditions -- 12.3.1.2 Dehydration of Alcohols -- 12.3.1.3 Oxidation of Aldehydes to Carboxylic Acids Using Water -- 12.3.2 Case Studies Showcasing the Application of Microwave‐Assisted Reactions -- 12.3.2.1 Microwave‐Assisted C C Bond Formation -- 12.3.2.2 Microwave‐Assisted Cyclization -- 12.3.2.3 Microwave‐Assisted Dehydrogenation Reactions -- 12.3.2.4 Microwave‐Assisted Organic Synthesis -- 12.3.3 Highlighting Successful Instances of Ultrasound‐Promoted Organic Synthesis -- 12.3.3.1 Ultrasound‐Promoted in Organic Synthesis -- 12.3.3.2 Ultrasound‐Promoted Oxidations -- 12.3.3.3 Ultrasound‐Promoted Esterification -- 12.3.3.4 Ultrasound‐Promoted Cyclization -- 12.4 Scope and Limitations -- 12.4.1 Discussing the Applicability of Each Method to Different Reaction Types -- 12.4.2 Identifying the Limitations and Challenges Faced by Each Technique -- 12.4.3 Opportunities for Combining Approaches to Overcome Specific Limitations -- 12.5 Future Directions and Emerging Trends -- 12.5.1 Overview of Recent Advancements and Ongoing Research in Thermal, Microwave, and Ultrasound‐Assisted Preparations -- 12.5.1.1 Food Processing Technologies.
12.5.1.2 Chemical Routes to Materials: Thermal Oxidation of Graphite for Graphene Preparation.
Record Nr. UNINA-9910877219903321
Verma Dakeshwar Kumar  
Newark : , : John Wiley & Sons, Incorporated, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Industrial Scale Inhibition : Principles, Design, and Applications
Industrial Scale Inhibition : Principles, Design, and Applications
Autore Yaagoob Ibrahim Yahia
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2024
Descrizione fisica 1 online resource (595 pages)
Altri autori (Persone) VermaChandrabhan
ISBN 9781394191185
9781394191178
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- About the Editors -- List of Contributors -- Preface -- Acknowledgments -- Chapter 1 Scales, Scaling, and Antiscalants: Fundamentals, Mechanisms, and Properties -- 1.1 Introduction -- 1.2 Scales -- 1.2.1 Calcium Carbonate -- 1.2.2 Calcium Sulfate -- 1.2.3 Calcium Phosphate -- 1.3 Scaling -- 1.3.1 Initiation -- 1.3.2 Transport Phenomenon -- 1.3.3 Adsorption Process -- 1.3.4 Removal -- 1.3.5 Aging -- 1.3.6 Supersaturation -- 1.3.7 Nucleation -- 1.3.8 Contact or Induction Period -- 1.4 Antiscalant/Chemical Treatment -- 1.5 Antiscalant Mechanism -- 1.6 Antiscalant in Industrial Water‐Circulating Systems -- 1.7 Antiscalants in Oilfield Environments -- 1.8 Overview of Some Plant‐derived and Organic‐based Antiscalants -- 1.9 Conclusion and Future Perspectives -- Acknowledgments -- References -- Chapter 2 Traditional and Eco‐friendly Antiscalants: Advantages and Disadvantages -- 2.1 Introduction -- 2.2 Formation and Hazards of Scale -- 2.2.1 Scale Inhibition Measures -- 2.2.2 Classification of Scale Inhibitors -- 2.2.2.1 Natural Scale Inhibitors -- 2.2.2.2 Polymer Scale Inhibitors -- 2.2.2.3 Eco‐friendly Scale Inhibitor -- 2.2.3 Scale Inhibition Mechanism -- 2.2.3.1 Complex Solubilization -- 2.2.3.2 Dispersion -- 2.2.3.3 Lattice Distortion -- 2.2.3.4 Dissolution Limit Effect -- 2.2.3.5 Strong Polar Group Action -- 2.2.3.6 Regenerative Self‐extrication Membrane Hypothesis -- 2.3 Advantages and Disadvantages of Traditional Impedance Agents -- 2.3.1 Scale Inhibitor for Phosphorus‐containing Polymers -- 2.3.2 Copolymer Scale Inhibitor -- 2.4 Advantages and Disadvantages of Environmentally Friendly Scale Inhibitors -- 2.4.1 PASP and PESA -- 2.4.2 Plant Extracts -- 2.4.3 Carbon Nanoparticle Scale Inhibitor -- 2.4.3.1 Carbon Nanoparticles -- 2.4.3.2 Carbon Nanotubes (CNTs) -- 2.4.3.3 Carbon Quantum Dots (CQDs).
2.5 Future Prospects and Challenges -- Acknowledgments -- Declaration of Competing Interest -- References -- Chapter 3 Electrochemistry Basics and Theory of Scaling in Various Electrolytes: Effect of pH and Other Parameters -- 3.1 Introduction to Electrochemistry -- 3.2 Fundamentals of Electrochemistry -- 3.2.1 Electrochemical Processes: Chemical-Electrical Interplay -- 3.2.2 Electrode Potentials and Their Significance -- 3.2.3 Nernst Equation: Linking Potential and Concentration -- 3.2.4 Faraday's Laws and Their Role in Quantitative Electrochemistry -- 3.2.5 Electrolysis Principles -- 3.3 Scaling Phenomena in Electrolytic Systems -- 3.3.1 Understanding Scaling and Its Multifaceted Effects -- 3.3.2 pH as a Key Driver of Scaling: Mechanisms and Implications -- 3.3.3 Temperature's Role in Scaling: Thermal Dynamics and Consequences -- 3.3.4 Impact of Ionic Strength on Scaling and Electrochemical Behavior -- 3.4 pH's Influence on Scaling and Electrochemical Processes -- 3.4.1 pH's Influence on Electrode Kinetics and Reaction Rates -- 3.4.2 pH's Influence on Reaction Rates -- 3.4.3 Proton Activity as a Determinant of Pace -- 3.4.4 The Nernst Equation: Linking pH and Electrode Potential -- 3.4.5 Ion Mobility Variations with pH and Their Electrochemical Consequences -- 3.4.6 pH‐Dependent Deposition Dynamics: Growth, Morphology, and Effects -- 3.5 Temperature and Ionic Strength Effects on Scaling -- 3.5.1 Thermal Variability and Scaling Phenomena -- 3.5.2 Role of Ionic Strength in Modulating Scaling -- 3.6 Electrode Material and Its Influence on Scaling -- 3.6.1 Electrode Materials: Selection, Properties, and Impacts -- 3.6.2 Material‐Induced Scaling Effects: Challenges and Solutions -- 3.7 Electrolyte Composition and Current Density: Scaling Implications -- 3.7.1 Electrode Materials: Selection, Properties, and Impacts.
3.7.2 Material‐Induced Scaling Effects: Challenges and Solutions -- 3.8 Integrative Understanding of Electrochemical Processes -- 3.8.1 Synthesizing Insights from pH, Temperature, and Key Parameters -- 3.8.2 Synergies and Interactions: A Holistic View of Scaling Phenomena -- 3.9 Conclusion and Future Prospects -- References -- Chapter 4 A Critical Review of Relative Scale Inhibition Performance of Different Alternatives -- 4.1 Introduction -- 4.1.1 Substoichiometric Antiscalants -- 4.1.2 Conventional Mechanisms of Antiscalant‐induced Scale Inhibition and Their Critical Evaluation -- 4.1.3 Nonconventional Hypothesis of Scale Inhibition Mechanism -- 4.1.4 Relative Scale Inhibitors Performance Assessment -- 4.1.5 Other Chemical Methods -- 4.1.6 Nonchemical Alternatives to Antiscalants -- 4.2 Concluding Remarks -- 4.3 Future Perspectives -- Acknowledgment -- References -- Chapter 5 Environmentally Acceptable Antiscalants and Their Hydrolytic Stability -- 5.1 Background of Scales and Antiscalants -- 5.1.1 Antiscalant or Scale Inhibitors -- 5.1.2 Phosphorus‐Based Antiscalants -- 5.1.3 Phosphorus‐Free Antiscalants -- 5.2 Hydrolytic Stability of Scales and Antiscalants -- 5.2.1 Scales -- 5.2.2 Antiscalants -- 5.3 Recent Developments for Environmentally Acceptable Antiscalants and Their Hydrolytic Stability -- 5.3.1 Natural Green Antiscalants -- 5.3.2 Environmentally Degradable Polymers -- 5.3.2.1 Oil and Gas Industries -- 5.3.2.2 Water Treatment Industries -- 5.4 Conclusion -- 5.5 Future Perspective -- Acknowledgements -- References -- Chapter 6 Assessment of Industrial Scale Inhibition: Experimental and Computational Approaches -- 6.1 Introduction -- 6.1.1 Oil and Gas Industry -- 6.1.2 Power Generation Industry -- 6.1.3 Water Treatment Industry -- 6.1.4 Food and Beverage Industry -- 6.1.5 Mining Industry -- 6.1.6 Chemical Industry.
6.2 Brief Overview of Experimental and Computational Approaches -- 6.2.1 Experimental Approaches -- 6.2.2 Computational Approaches -- 6.3 Experimental Approaches for Assessing Scale -- 6.4 Computational Approaches for Assessing Scale -- 6.5 Advantages and Disadvantages of Experimental and Computational Approaches -- 6.5.1 Advantages of Experimental Approaches -- 6.5.2 Disadvantages of Experimental Approaches -- 6.5.3 Advantages of Computational Approaches -- 6.5.4 Disadvantages of Computational Approaches -- 6.6 Challenges and Future Outlooks -- 6.7 Conclusion -- References -- Chapter 7 Recent Advancements Toward Phosphorus‐Free Scale Inhibitors: An Eco‐friendly Approach in Industrial Scale Inhibition -- 7.1 Introduction -- 7.2 Scale Inhibitors and Mechanism of Scale Inhibition -- 7.3 Advancements Toward Phosporous‐Free Scale Inhibitors -- 7.4 Summary -- 7.5 Future Perspective -- Acknowledgments -- References -- Chapter 8 Trends in Using Organic Compounds as Scale Inhibitors: Past, Present, and Future Scenarios -- 8.1 Introduction -- 8.2 Classification of Organic Scale Inhibitors -- 8.2.1 Carboxylic Acid Functional Groups of Scale Inhibitors -- 8.2.2 Organophosphorus‐Based Scale Inhibitors -- 8.3 Adsorption Mechanism of Organic Scale Inhibitors in the Oil and Gas Industry -- 8.4 Increasing the Effectiveness of Organic Scale Inhibitors -- 8.5 Technologies of Organic Scale Inhibitor Application in the Oil and Gas Industry -- 8.6 Future Perspective -- 8.7 Conclusion -- References -- Chapter 9 Organic Compounds as Scale Inhibitors -- 9.1 Introduction -- 9.2 Organic Compounds as Scale Inhibitors -- 9.2.1 Organophosphonic Acid as Scale Inhibitor -- 9.2.2 Effect of Functional Groups as Scale Inhibitors -- 9.2.2.1 Effect of Carboxyl Groups on the Performance of Scale Inhibitors.
9.2.2.2 The Effect of Sulfonic Acid Group on the Performance of Scale Inhibitors -- 9.2.2.3 The Effect of Hydroxyl Group on the Performance of Scale Inhibitors -- 9.3 New Green Scale Inhibitors -- 9.4 Synergistic Effect Between Functional Groups -- 9.5 Future Prospects and Challenges -- Acknowledgments -- Declaration of Competing Interest -- References -- Chapter 10 Plant Extracts as Scale Inhibitors -- 10.1 Introduction -- 10.2 Plant Extracts -- 10.3 Scale Inhibition Mechanism -- 10.3.1 The Solubilization of Chelation -- 10.3.2 Lattice Distortion -- 10.3.3 Adsorption, Coagulation, and Dispersion -- 10.3.4 Threshold -- 10.4 Plant Extracts to Prevent Carbonate Scale -- 10.5 Plant Extracts to Prevent Sulfate Scale -- 10.6 Future Prospects and Challenges -- Acknowledgments -- Declaration of Competing Interest -- References -- Chapter 11 Carbohydrates as Scale Inhibitors -- 11.1 Introduction -- 11.2 Carbohydrates as Scale Inhibitors -- 11.2.1 Cyclodextrin as Scale Inhibitors in Oilfields -- 11.2.2 Inhibitors of Green Scale Using Carboxymethyl Chitosan in Oil Wells -- 11.2.3 Scale‐Inhibiting Properties of Guar Galactomannan and Konjac Glucomannan -- 11.2.4 As Inhibitors of Green Scale, Guar, and Xanthan Gums -- 11.2.4.1 The Scale Inhibition Mechanism -- 11.2.5 Chitosan and Substituted/Modified Chitosan as Green Scale Inhibitors -- 11.3 Conclusion -- Abbreviations -- Author Contribution Statement -- References -- Chapter 12 Copolymers and Polymers as Scale Inhibitors -- 12.1 Introduction -- 12.2 Copolymer Scale Inhibitor -- 12.3 Polymer Scale Inhibitor -- 12.4 Future Prospects and Challenges -- Acknowledgments -- Declaration of Competing Interest -- References -- Chapter 13 Polymeric and Copolymeric Scale Inhibitors: Trends and Opportunities -- 13.1 Introduction -- 13.2 Copolymers -- 13.3 Polymers -- 13.4 Scale Formation -- 13.5 Scale Inhibitors.
13.6 Copolymers as Scale Inhibitors in Industrial Water‐Circulating Systems.
Record Nr. UNINA-9910876794103321
Yaagoob Ibrahim Yahia  
Newark : , : John Wiley & Sons, Incorporated, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Organic corrosion inhibitors : synthesis, characterization, mechanism, and applications / / edited by Chandrabhan Verma, Chaudhery Mustansar Hussain, Eno E. Ebenso
Organic corrosion inhibitors : synthesis, characterization, mechanism, and applications / / edited by Chandrabhan Verma, Chaudhery Mustansar Hussain, Eno E. Ebenso
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley, , [2022]
Descrizione fisica 1 online resource (525 pages)
Disciplina 620.11223
Soggetto topico Corrosion and anti-corrosives
Corrosion and anti-corrosives - Environmental aspects
Soggetto genere / forma Electronic books.
ISBN 1-119-79449-8
1-119-79451-X
1-119-79450-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910555076503321
Hoboken, New Jersey : , : Wiley, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Organic corrosion inhibitors : synthesis, characterization, mechanism, and applications / / edited by Chandrabhan Verma, Chaudhery Mustansar Hussain, Eno E. Ebenso
Organic corrosion inhibitors : synthesis, characterization, mechanism, and applications / / edited by Chandrabhan Verma, Chaudhery Mustansar Hussain, Eno E. Ebenso
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley, , [2022]
Descrizione fisica 1 online resource (525 pages)
Disciplina 620.11223
Soggetto topico Corrosion and anti-corrosives
Corrosion and anti-corrosives - Environmental aspects
ISBN 1-119-79449-8
1-119-79451-X
1-119-79450-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910830597803321
Hoboken, New Jersey : , : Wiley, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui