Vai al contenuto principale della pagina

Green Chemical Synthesis with Microwaves and Ultrasound



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Verma Dakeshwar Kumar Visualizza persona
Titolo: Green Chemical Synthesis with Microwaves and Ultrasound Visualizza cluster
Pubblicazione: Newark : , : John Wiley & Sons, Incorporated, , 2024
©2024
Edizione: 1st ed.
Descrizione fisica: 1 online resource (409 pages)
Altri autori: VermaChandrabhan  
FuertesPaz Otero  
Nota di contenuto: Cover -- Title Page -- Copyright -- Contents -- About the Editors -- Preface -- Chapter 1 Ultrasound Irradiation: Fundamental Theory, Electromagnetic Spectrum, Important Properties, and Physical Principles -- 1.1 Introduction -- 1.2 Cavitation History -- 1.2.1 Basics of Cavitation -- 1.2.2 Types of Cavitation -- 1.3 Application of Ultrasound Irradiation -- 1.3.1 Sonoluminescence and Sonophotocatalysis -- 1.3.2 Industrial Cleaning -- 1.3.3 Material Processing -- 1.3.4 Chemical and Biological Reactions -- 1.4 Conclusion -- Acknowledgments -- References -- Chapter 2 Fundamental Theory of Electromagnetic Spectrum, Dielectric and Magnetic Properties, Molecular Rotation, and the Green Chemistry of Microwave Heating Equipment -- 2.1 Introduction -- 2.1.1 Historical Background -- 2.1.2 Green Chemistry Principles for Sustainable System -- 2.2 Fundamental Concepts of the Electromagnetic Spectrum Theory -- 2.3 Electrical, Dielectric, and Magnetic Properties in Microwave Irradiation -- 2.4 Microwave Irradiation Molecular Rotation -- 2.5 Fundamentals of Electromagnetic Theory in Microwave Irradiation -- 2.5.1 Electromagnetic Radiations and Microwave -- 2.5.2 Heating Mechanism of Microwave: Conventional Versus Microwave Heating -- 2.6 Physical Principles of Microwave Heating and Equipment -- 2.7 Green Chemistry Through Microwave Heating: Applications and Benefits -- 2.8 Conclusion -- References -- Chapter 3 Conventional Versus Green Chemical Transformation: MCRs, Solid Phase Reaction, Green Solvents, Microwave, and Ultrasound Irradiation -- 3.1 Introduction -- 3.2 A Brief Overview of Green Chemistry -- 3.2.1 Definition and Historical Background -- 3.2.2 Significance -- 3.3 Multicomponent Reactions -- 3.4 Solid Phase Reactions -- 3.5 Microwave Induced Synthesis -- 3.6 Ultrasound Induced Synthesis -- 3.7 Green Chemicals and Solvents.
3.8 Conclusions and Outlook -- References -- Chapter 4 Metal‐Catalyzed Reactions Under Microwave and Ultrasound Irradiation -- 4.1 Ultrasonic Irradiation -- 4.1.1 Iron‐Based Catalysts -- 4.1.2 Copper‐Based Catalysts -- 4.1.2.1 Dihydropyrimidinones by Cu‐Based Catalysts -- 4.1.2.2 Dihydroquinazolinones by Cu‐Based Catalysts -- 4.1.3 Misalliances Metal‐Based Catalysts -- 4.2 Microwave‐Assisted Reactions -- 4.2.1 Solid Acid and Base Catalysts -- 4.2.1.1 Condensation Reactions -- 4.2.1.2 Cyclization Reactions -- 4.2.1.3 Multi‐component Reactions -- 4.2.1.4 Friedel-Crafts Reactions -- 4.2.1.5 Reaction Involving Catalysts of Biological Origin -- 4.2.1.6 Reduction -- 4.2.1.7 Oxidation -- 4.2.1.8 Coupling Reactions -- 4.2.1.9 Micelliances Reactions -- 4.2.1.10 Click Chemistry -- 4.3 Conclusion -- Acknowledgments -- References -- Chapter 5 Microwave‐ and Ultrasonic‐Assisted Coupling Reactions -- 5.1 Introduction -- 5.2 Microwave -- 5.2.1 Microwave‐Assisted Coupling Reactions -- 5.2.2 Ultrasound‐Assisted Coupling Reactions -- 5.3 Conclusion -- References -- Chapter 6 Synthesis of Heterocyclic Compounds Under Microwave Irradiation Using Name Reactions -- 6.1 Introduction -- 6.2 Classical Methods for Heterocyclic Synthesis Under Microwave Irradiation -- 6.2.1 Piloty-Robinson Pyrrole Synthesis -- 6.2.2 Clauson-Kaas Pyrrole Synthesis -- 6.2.3 Paal-Knorr Pyrrole Synthesis -- 6.2.4 Paal-Knorr Furan Synthesis -- 6.2.5 Paal-Knorr Thiophene Synthesis -- 6.2.6 Gewald Reaction -- 6.2.7 Fischer Indole Synthesis -- 6.2.8 Bischler-Möhlau Indole Synthesis -- 6.2.9 Hemetsberger-Knittel Indole Synthesis -- 6.2.10 Leimgruber-Batcho Indole Synthesis -- 6.2.11 Cadogan-Sundberg Indole Synthesis -- 6.2.12 Pechmann Pyrazole Synthesis -- 6.2.13 Debus-Radziszewski Reaction -- 6.2.14 van Leusen Imidazole Synthesis -- 6.2.15 van Leusen Oxazole Synthesis.
6.2.16 Robinson-Gabriel Reaction -- 6.2.17 Hantzsch Thiazole Synthesis -- 6.2.18 Einhorn-Brunner Reaction -- 6.2.19 Pellizzari Reaction -- 6.2.20 Huisgen Reaction -- 6.2.21 Finnegan Tetrazole Synthesis -- 6.2.22 Four‐component Ugi‐azide Reaction -- 6.2.23 Kröhnke Pyridine Synthesis -- 6.2.24 Bohlmann-Rahtz Pyridine Synthesis -- 6.2.25 Boger Reaction -- 6.2.26 Skraup Reaction -- 6.2.27 Gould-Jacobs Reaction -- 6.2.28 Friedländer Quinoline Synthesis -- 6.2.29 Povarov Reaction -- 6.3 Conclusion -- Acknowledgments -- References -- Chapter 7 Microwave‐ and Ultrasound‐Assisted Enzymatic Reactions -- 7.1 Introduction -- 7.2 Influence Microwave Radiation on the Stability and Activity of Enzymes -- 7.3 Principle of Ultrasonic‐Assisted Enzymolysis -- 7.4 Applications of Ultrasonic‐Assisted Enzymolysis -- 7.4.1 Proteins and Other Plant Components Can Be Transformed and Extracted -- 7.4.2 Modification of Protein Functionality -- 7.4.3 Enhancement of Biological Activity -- 7.4.4 Ultrasonic‐Assisted Acceleration of Hydrolysis Time -- 7.5 Enzymatic Reactions Supported by Ultrasound -- 7.5.1 Lipase -- 7.5.2 Protease -- 7.5.3 Polysaccharide Enzymes -- 7.6 Biodiesel Production via Ultrasound‐Supported Transesterification -- 7.6.1 Homogenous Acid‐Catalyzed Ultrasound‐Assisted Transesterification -- 7.6.2 Transesterification with Ultrasound Assistance and Homogenous Base Catalysis -- 7.6.3 Heterogeneous Acid‐Catalyzed Ultrasound‐Assisted Transesterification -- 7.6.4 Heterogeneous Base‐Catalyzed Ultrasound‐Assisted Transesterification -- 7.6.5 Enzyme‐Catalyzed Ultrasound‐Assisted Transesterification -- 7.7 Conclusions -- Acknowledgments -- References -- Chapter 8 Microwave‐ and Ultrasound‐Assisted Synthesis of Polymers -- 8.1 Introduction -- 8.2 Microwave‐Assisted Synthesis of Polymers -- 8.3 Ultrasound‐Assisted Synthesis of Polymers -- 8.4 Conclusion -- References.
Chapter 9 Synthesis of Nanomaterials Under Microwave and Ultrasound Irradiation -- 9.1 Introduction -- 9.2 Synthesis of Metal Nanoparticles -- 9.3 Synthesis of Carbon Dots -- 9.4 Synthesis of Metal Oxides -- 9.5 Synthesis of Silicon Dioxide -- 9.6 Conclusion -- References -- Chapter 10 Microwave‐ and Ultrasound‐Assisted Synthesis of Metal‐Organic Frameworks (MOF) and Covalent Organic Frameworks (COF) -- 10.1 Introduction -- 10.2 Principles -- 10.2.1 Principles of Microwave Heating -- 10.2.2 Principle of Ultrasound‐Assisted Techniques -- 10.2.3 Advantages and Disadvantages of Microwave‐ and Ultrasound‐Assisted Techniques -- 10.3 MOF Synthesis by Microwave and Ultrasound Method -- 10.3.1 Microwave‐Assisted Synthesis of MOF -- 10.3.2 Ultrasound‐Assisted Synthesis of MOFs -- 10.4 Factors That Affect MOF Synthesis -- 10.4.1 Solvent -- 10.4.2 Temperature and pH -- 10.5 Application of MOF -- 10.6 COF Synthesis by Microwave and Ultrasound Method -- 10.6.1 Ultrasound‐Assisted Synthesis of COFs -- 10.6.2 Microwave‐Assisted Synthesis of COF -- 10.6.3 Structure of COF (2D and 3D) -- 10.7 Factors Affecting the COF Synthesis -- 10.8 Applications of COFs -- 10.9 Future Predictions -- 10.10 Summary -- Acknowledgments -- References -- Chapter 11 Solid Phase Synthesis Catalyzed by Microwave and Ultrasound Irradiation -- 11.1 Introduction -- 11.2 Wastewater Treatment -- 11.3 Biodiesel Production -- 11.4 Oxygen Reduction Reaction -- 11.5 Alcoholic Fuel Cells -- 11.6 Conclusion and Future Plans -- References -- Chapter 12 Comparative Studies on Thermal, Microwave‐Assisted, and Ultrasound‐Promoted Preparations -- 12.1 Introduction -- 12.1.1 Background on Preparative Techniques in Chemistry -- 12.1.2 Overview of Thermal, Microwave‐Assisted, and Ultrasound‐Promoted Preparations -- 12.1.3 Significance of Comparative Studies in Enhancing Synthetic Methodologies.
12.1.3.1 Optimization of Conditions -- 12.1.3.2 Efficiency Improvement -- 12.1.3.3 Methodological Advances -- 12.1.3.4 Sustainability and Green Chemistry -- 12.2 Fundamentals of Thermal, Microwave‐Assisted, and Ultrasound‐Assisted Reactions -- 12.2.1 Explanation of Thermal Reactions and Their Advantages and Limitations -- 12.2.2 Introduction to Microwave‐Assisted Reactions and How They Differ from Traditional Method -- 12.2.3 Understanding the Principles and Mechanisms of Ultrasound‐Promoted Reactions -- 12.3 Case Studies in Organic Synthesis -- 12.3.1 Examining Examples of Organic Reactions Performed Under Thermal Conditions -- 12.3.1.1 Esterification Reaction Under Thermal Conditions -- 12.3.1.2 Dehydration of Alcohols -- 12.3.1.3 Oxidation of Aldehydes to Carboxylic Acids Using Water -- 12.3.2 Case Studies Showcasing the Application of Microwave‐Assisted Reactions -- 12.3.2.1 Microwave‐Assisted C C Bond Formation -- 12.3.2.2 Microwave‐Assisted Cyclization -- 12.3.2.3 Microwave‐Assisted Dehydrogenation Reactions -- 12.3.2.4 Microwave‐Assisted Organic Synthesis -- 12.3.3 Highlighting Successful Instances of Ultrasound‐Promoted Organic Synthesis -- 12.3.3.1 Ultrasound‐Promoted in Organic Synthesis -- 12.3.3.2 Ultrasound‐Promoted Oxidations -- 12.3.3.3 Ultrasound‐Promoted Esterification -- 12.3.3.4 Ultrasound‐Promoted Cyclization -- 12.4 Scope and Limitations -- 12.4.1 Discussing the Applicability of Each Method to Different Reaction Types -- 12.4.2 Identifying the Limitations and Challenges Faced by Each Technique -- 12.4.3 Opportunities for Combining Approaches to Overcome Specific Limitations -- 12.5 Future Directions and Emerging Trends -- 12.5.1 Overview of Recent Advancements and Ongoing Research in Thermal, Microwave, and Ultrasound‐Assisted Preparations -- 12.5.1.1 Food Processing Technologies.
12.5.1.2 Chemical Routes to Materials: Thermal Oxidation of Graphite for Graphene Preparation.
Titolo autorizzato: Green Chemical Synthesis with Microwaves and Ultrasound  Visualizza cluster
ISBN: 3-527-84447-3
3-527-84449-X
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910877219903321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui