Mathematical modeling and simulation [[electronic resource] ] : introduction for scientists and engineers / / Kai Velten |
Autore | Velten Kai |
Pubbl/distr/stampa | Weinheim ; ; Chichester, : Wiley-VCH, 2009 |
Descrizione fisica | 1 online resource (364 p.) |
Disciplina |
511.8
511/.8 |
Soggetto topico |
Mathematical models
Computer simulation Science - Mathematical models Engineering - Mathematical models Science - Computer simulation Engineering - Computer simulation |
Soggetto genere / forma | Electronic books. |
ISBN |
1-282-18917-4
9786612189173 3-527-62760-X 3-527-62761-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Mathematical Modeling and Simulation; Contents; Preface; 1 Principles of Mathematical Modeling; 1.1 A Complex World Needs Models; 1.2 Systems, Models, Simulations; 1.2.1 Teleological Nature of Modeling and Simulation; 1.2.2 Modeling and Simulation Scheme; 1.2.3 Simulation; 1.2.4 System; 1.2.5 Conceptual and Physical Models; 1.3 Mathematics as a Natural Modeling Language; 1.3.1 Input-Output Systems; 1.3.2 General Form of Experimental Data; 1.3.3 Distinguished Role of Numerical Data; 1.4 Definition of Mathematical Models; 1.5 Examples and Some More Definitions
1.5.1 State Variables and System Parameters1.5.2 Using Computer Algebra Software; 1.5.3 The Problem Solving Scheme; 1.5.4 Strategies to Set up Simple Models; 1.5.4.1 Mixture Problem; 1.5.4.2 Tank Labeling Problem; 1.5.5 Linear Programming; 1.5.6 Modeling a Black Box System; 1.6 Even More Definitions; 1.6.1 Phenomenological and Mechanistic Models; 1.6.2 Stationary and Instationary models; 1.6.3 Distributed and Lumped models; 1.7 Classification of Mathematical Models; 1.7.1 From Black to White Box Models; 1.7.2 SQM Space Classification: S Axis; 1.7.3 SQM Space Classification: Q Axis 1.7.4 SQM Space Classification: M Axis1.8 Everything Looks Like a Nail?; 2 Phenomenological Models; 2.1 Elementary Statistics; 2.1.1 Descriptive Statistics; 2.1.1.1 Using Calc; 2.1.1.2 Using the R Commander; 2.1.2 Random Processes and Probability; 2.1.2.1 Random Variables; 2.1.2.2 Probability; 2.1.2.3 Densities and Distributions; 2.1.2.4 The Uniform Distribution; 2.1.2.5 The Normal Distribution; 2.1.2.6 Expected Value and Standard Deviation; 2.1.2.7 More on Distributions; 2.1.3 Inferential Statistics; 2.1.3.1 Is Crop A's Yield Really Higher?; 2.1.3.2 Structure of a Hypothesis Test 2.1.3.3 The t test2.1.3.4 Testing Regression Parameters; 2.1.3.5 Analysis of Variance; 2.2 Linear Regression; 2.2.1 The Linear Regression Problem; 2.2.2 Solution Using Software; 2.2.3 The Coefficient of Determination; 2.2.4 Interpretation of the Regression Coefficients; 2.2.5 Understanding LinRegEx1.r; 2.2.6 Nonlinear Linear Regression; 2.3 Multiple Linear Regression; 2.3.1 The Multiple Linear Regression Problem; 2.3.2 Solution Using Software; 2.3.3 Cross-Validation; 2.4 Nonlinear Regression; 2.4.1 The Nonlinear Regression Problem; 2.4.2 Solution Using Software 2.4.3 Multiple Nonlinear Regression2.4.4 Implicit and Vector-Valued Problems; 2.5 Neural Networks; 2.5.1 General Idea; 2.5.2 Feed-Forward Neural Networks; 2.5.3 Solution Using Software; 2.5.4 Interpretation of the Results; 2.5.5 Generalization and Overfitting; 2.5.6 Several Inputs Example; 2.6 Design of Experiments; 2.6.1 Completely Randomized Design; 2.6.2 Randomized Complete Block Design; 2.6.3 Latin Square and More Advanced Designs; 2.6.4 Factorial Designs; 2.6.5 Optimal Sample Size; 2.7 Other Phenomenological Modeling Approaches; 2.7.1 Soft Computing 2.7.1.1 Fuzzy Model of a Washing Machine |
Record Nr. | UNINA-9910139501003321 |
Velten Kai | ||
Weinheim ; ; Chichester, : Wiley-VCH, 2009 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Mathematical modeling and simulation : introduction for scientists and engineers / / Kai Velten |
Autore | Velten Kai |
Pubbl/distr/stampa | Weinheim, Germany : , : Wiley-VCH, , [2009] |
Descrizione fisica | 1 online resource (364 p.) |
Disciplina | 511.8 |
Soggetto topico |
Computer simulation
Science - Mathematical models Science - Computer simulation Engineering - Mathematical models Engineering - Computer simulation Mathematical models |
ISBN |
1-282-18917-4
9786612189173 3-527-62760-X 3-527-62761-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Mathematical Modeling and Simulation; Contents; Preface; 1 Principles of Mathematical Modeling; 1.1 A Complex World Needs Models; 1.2 Systems, Models, Simulations; 1.2.1 Teleological Nature of Modeling and Simulation; 1.2.2 Modeling and Simulation Scheme; 1.2.3 Simulation; 1.2.4 System; 1.2.5 Conceptual and Physical Models; 1.3 Mathematics as a Natural Modeling Language; 1.3.1 Input-Output Systems; 1.3.2 General Form of Experimental Data; 1.3.3 Distinguished Role of Numerical Data; 1.4 Definition of Mathematical Models; 1.5 Examples and Some More Definitions
1.5.1 State Variables and System Parameters1.5.2 Using Computer Algebra Software; 1.5.3 The Problem Solving Scheme; 1.5.4 Strategies to Set up Simple Models; 1.5.4.1 Mixture Problem; 1.5.4.2 Tank Labeling Problem; 1.5.5 Linear Programming; 1.5.6 Modeling a Black Box System; 1.6 Even More Definitions; 1.6.1 Phenomenological and Mechanistic Models; 1.6.2 Stationary and Instationary models; 1.6.3 Distributed and Lumped models; 1.7 Classification of Mathematical Models; 1.7.1 From Black to White Box Models; 1.7.2 SQM Space Classification: S Axis; 1.7.3 SQM Space Classification: Q Axis 1.7.4 SQM Space Classification: M Axis1.8 Everything Looks Like a Nail?; 2 Phenomenological Models; 2.1 Elementary Statistics; 2.1.1 Descriptive Statistics; 2.1.1.1 Using Calc; 2.1.1.2 Using the R Commander; 2.1.2 Random Processes and Probability; 2.1.2.1 Random Variables; 2.1.2.2 Probability; 2.1.2.3 Densities and Distributions; 2.1.2.4 The Uniform Distribution; 2.1.2.5 The Normal Distribution; 2.1.2.6 Expected Value and Standard Deviation; 2.1.2.7 More on Distributions; 2.1.3 Inferential Statistics; 2.1.3.1 Is Crop A's Yield Really Higher?; 2.1.3.2 Structure of a Hypothesis Test 2.1.3.3 The t test2.1.3.4 Testing Regression Parameters; 2.1.3.5 Analysis of Variance; 2.2 Linear Regression; 2.2.1 The Linear Regression Problem; 2.2.2 Solution Using Software; 2.2.3 The Coefficient of Determination; 2.2.4 Interpretation of the Regression Coefficients; 2.2.5 Understanding LinRegEx1.r; 2.2.6 Nonlinear Linear Regression; 2.3 Multiple Linear Regression; 2.3.1 The Multiple Linear Regression Problem; 2.3.2 Solution Using Software; 2.3.3 Cross-Validation; 2.4 Nonlinear Regression; 2.4.1 The Nonlinear Regression Problem; 2.4.2 Solution Using Software 2.4.3 Multiple Nonlinear Regression2.4.4 Implicit and Vector-Valued Problems; 2.5 Neural Networks; 2.5.1 General Idea; 2.5.2 Feed-Forward Neural Networks; 2.5.3 Solution Using Software; 2.5.4 Interpretation of the Results; 2.5.5 Generalization and Overfitting; 2.5.6 Several Inputs Example; 2.6 Design of Experiments; 2.6.1 Completely Randomized Design; 2.6.2 Randomized Complete Block Design; 2.6.3 Latin Square and More Advanced Designs; 2.6.4 Factorial Designs; 2.6.5 Optimal Sample Size; 2.7 Other Phenomenological Modeling Approaches; 2.7.1 Soft Computing 2.7.1.1 Fuzzy Model of a Washing Machine |
Altri titoli varianti | Mathematical modeling and simulation for scientists and engineers |
Record Nr. | UNINA-9910830867903321 |
Velten Kai | ||
Weinheim, Germany : , : Wiley-VCH, , [2009] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|