top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Agroforestry to Combat Global Challenges : Current Prospects and Future Challenges
Agroforestry to Combat Global Challenges : Current Prospects and Future Challenges
Autore Jatav Hanuman Singh
Edizione [1st ed.]
Pubbl/distr/stampa Singapore : , : Springer, , 2024
Descrizione fisica 1 online resource (579 pages)
Disciplina 634.99
Altri autori (Persone) RajputVishnu D
MinkinaTatiana
Van HullebuschEric D
DuttaAsik
Collana Sustainable Development and Biodiversity Series
ISBN 981-9972-82-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Acknowledgement -- Contents -- Editors and Contributors -- Part I: Agro-Forestry-Inception for Restoring Soil Health (Physical, Chemical and Biological Properties) -- Chapter 1: Soil Fertility and Soil Biodiversity Health Under Different Agroforestry Systems -- 1.1 Introduction -- 1.2 Agroforestry and Climate Change Mitigation -- 1.3 Agroforestry and Soil Health -- 1.4 Agroforestry and Soil Biodiversity -- 1.5 Conclusion -- References -- Chapter 2: Agroforestry: A Resource Conserving Technology for Efficient Utilization of Agricultural Inputs, Leads to Food and ... -- 2.1 Introduction -- 2.2 Agroforestry as Low Input Agriculture -- 2.2.1 Concept and Principles of Agroforestry -- 2.3 Ecological Base of Agroforestry -- 2.4 Practices and Systems -- 2.4.1 Improved Fallows -- 2.4.2 Alley Cropping -- 2.4.3 Homegarden, Shaded Perennials and Multi-Strata Systems -- 2.4.4 Silvopastoral Systems -- 2.4.5 Protective Systems -- 2.4.6 Tree Woodlots and Specialty Crops -- 2.5 Animals in Agroforestry -- 2.6 Geographical Distribution of Agroforestry Systems -- 2.7 Sustainable Agroforestry System Design -- 2.7.1 Planet -- 2.7.1.1 Soil Conservation and Soil Fertility Improvement -- 2.7.1.2 Biodiversity Conservation -- 2.7.2 Profit -- 2.7.3 People -- 2.7.4 Designing Agroforestry Systems for Sustainability -- 2.8 Role of Agroforestry -- 2.8.1 Food and Nutritional Security -- 2.8.2 Soil Conservation and Reclamation -- 2.8.3 Climate Change Adaptation and Mitigation -- 2.8.4 Agroforestry and Ecosystem Services -- 2.8.4.1 Increased Soil Nutrient Inputs -- Biological Nitrogen Fixation -- Deep Nitrate Capture -- Biomass Transfer -- Enhanced Nutrient Cycling -- Soil Organic Nitrogen -- Soil Organic Phosphorus -- 2.8.4.2 Soil Productivity, Protection and Reduced Nutrient Loss -- 2.8.4.3 Carbon Sequestration -- 2.9 Future Perspective of Agroforestry.
2.10 Conclusions -- References -- Chapter 3: The Tree-Crop Interface: Soil Moisture Relations -- 3.1 Introduction -- 3.2 Soil Moisture Relations in Tree-Crop Coupling System -- 3.2.1 Soil Moisture Relations in Agroforestry -- 3.2.2 ET Partitioning Between Tree and Crop Species -- 3.2.3 Quantification of Water Relations in Tree-Crop Interface -- 3.3 Soil Moisture Relations Modelling in Agroforestry -- 3.3.1 Radiation Partitioning -- 3.3.2 ET Partitioning -- 3.3.3 Soil Water Balance -- 3.4 Case Study -- 3.4.1 Field Experiment -- 3.4.2 Soil Water Dynamics and ET in Apple Tree-Cocksfoot System -- 3.4.3 Scenario Analysis -- 3.5 Conclusion -- References -- Chapter 4: Potential Nutrient Cycling and Management in Agroforestry -- 4.1 Introduction -- 4.2 Why Study Soil Nutrient Dynamics in AFS -- 4.3 Key Process Responsible for Soil Nutrient Dynamics in Agroforestry System -- 4.3.1 Litter Addition -- 4.3.2 Decomposition of Litter and Nutrient Release -- 4.3.3 Biological Nitrogen Fixation -- 4.4 Nitrogen (N) -- 4.5 Nitrogen Cycling Pathways -- 4.5.1 N Mineralization -- 4.5.2 Atmospheric N Fixation -- 4.5.3 N Miner from the Subsoil Layer: Tree Roots -- 4.5.4 Ammonia Mitigation Through the Tree Canopy -- 4.5.5 N Sequestration in Tree Biomass -- 4.5.6 Atmospheric Losses -- 4.5.7 Soil Erosion, Runoff and Leaching Losses -- 4.6 Carbon (C) -- 4.7 Carbon Sequestration in Agroforestry -- 4.8 Carbon Cycle -- 4.9 Different Types of Organic Carbon (OC) -- 4.9.1 Soil Organic Carbon (SOC) -- 4.9.2 Labile and Recalcitrant Soil Organic Carbon -- 4.9.3 Soil Organic Matter -- 4.9.3.1 Total Organic Carbon (TOC) -- 4.9.3.2 Microbial Biomass Carbon (MBC) -- 4.9.3.3 Particulate and Mineral-Associated Organic Carbon -- 4.9.3.4 Dissolved Organic Carbon (DOC) -- 4.9.3.5 Extractable Organic Carbon -- 4.10 Phosphorus -- 4.10.1 Role of Root Morphology in P Acquisition in Agroforestry.
4.10.2 Role of Organic Anions in P Acquisition and Mobilization Under Agroforestry System -- References -- Chapter 5: Agroforestry-Based Consequences Improve the Soil Health -- 5.1 Introduction -- 5.2 Soil -- 5.3 Soil Health and Management -- 5.4 Agroforestry -- 5.5 Indicative Factors of Soil Health Influenced by Agroforestry -- 5.5.1 Agroforestry for Soil Health -- 5.5.2 Carbon Transformation -- 5.5.3 Symbiotic Interaction -- 5.5.4 Control of Soil Erosion -- 5.6 Discussion -- 5.7 Conclusion and Future Prospective -- References -- Chapter 6: Soil Nutrient Dynamics and Cycling Under Agroforestry -- 6.1 Introduction -- 6.2 Nutrient Recycling Under an Agroforestry System -- 6.3 Major Processes Responsible for Soil Nutrient Dynamics in Agroforestry Systems -- 6.3.1 Litter Fall -- 6.3.2 Decomposition -- 6.4 Biological Nitrogen Fixation Under an Agroforestry System -- 6.4.1 Microflora -- 6.4.2 Microfauna -- 6.4.3 Mesofauna -- 6.4.4 Macrofauna -- 6.5 Soil Fauna: Small Burrowing Animals -- 6.6 What Are Nitrogen Fixing Trees? -- 6.7 Phosphorus Dynamics Under Agroforestry -- 6.8 Factors Affecting Biomass Decomposition -- 6.8.1 Substrate Quality -- 6.8.1.1 Carbon and Nitrogen Content -- 6.8.1.2 Lignin and Cellulose Content -- 6.8.1.3 Polyphenol -- 6.8.2 Soil Micro- and Macrofaunal Activity -- 6.8.3 Environmental Parameters -- 6.9 Root Dynamics Under Agroforestry System -- 6.10 Nutrient Use Efficiency (NUE) -- 6.11 Fertilizer Requirements in Trees -- 6.12 Fertigation on Tree Growth and Biomass Allocation -- 6.13 General Methods of Estimation of Nutrient Dynamics -- 6.14 Conclusion -- References -- Part II: Addressing Climate Change and Eco-System Services Through Agro-Forestry System -- Chapter 7: Benefactions of Agroforestry to Ecosystem Services -- 7.1 Introduction -- 7.2 Ecosystem Services in Agroforestry -- 7.2.1 Provisioning of Agroforestry.
7.2.2 Regulatory Services -- 7.2.2.1 Carbon Sequestration -- 7.2.2.2 Water Regulation -- 7.2.2.3 Pest and Pollution Regulation -- 7.3 Cultural Services -- 7.4 Supporting Services -- 7.5 Conclusion -- References -- Chapter 8: Agroforestry for Restoring and Improving Soil Health -- 8.1 Introduction -- 8.2 Agroforestry and Global Scenario -- 8.2.1 Characteristics of Good Trees in an Agroforestry System for Soil Improvement -- 8.3 Agroforestry for Restoration of Degraded Soil -- 8.4 Soil Fertility Improvement -- 8.4.1 Soil Organic Carbon Through Agroforestry -- 8.4.2 Nitrogen Availability Through Agroforestry -- 8.4.3 Phosphorus Availability Through Agroforestry -- 8.5 Nutrient Recovery of Soil Through Agroforestry -- 8.5.1 Leaf Litter Addition -- 8.5.2 Leaf Litter Decomposition -- 8.5.3 Nutrient Pumping -- 8.5.4 Biological Nitrogen Fixation -- 8.6 Agroforestry for Soil Biota -- 8.7 Conclusion -- References -- Chapter 9: Nutrient Acquisition in Agroforestry Ecosystem Services and Soil Health -- 9.1 Introduction -- 9.2 Dynamics of Soil Nutrient -- 9.3 Nutrient Cycling of Soil -- 9.4 In Agroforestry Major Processes for Soil Nutrient Dynamics -- 9.5 Improvement of Soil in Agroforestry -- 9.6 Nutrient Loss Under Agroforestry -- 9.7 Nutrient Recovery Under Agroforestry -- 9.8 Soil Enrichment Through Agroforestry -- 9.9 Nutrient Cycling Under Agroforestry -- 9.10 Nutrient Cycling Through Trees and Agroforestry -- 9.11 Nitrogen-Fixing Trees -- 9.12 Some Nitrogen-Fixing Tree Species -- 9.13 Choose Nitrogen-Fixing Trees -- 9.14 Help with Nitrogen-Fixing Trees in Agroforestry -- 9.15 Biological Nitrogen-Fixing Agroforestry -- 9.16 Process of Nutrient Pumping -- 9.17 For Agroforestry Desirable Characters in Tree Species -- 9.18 Plant Nutrient Sources and Losses -- 9.18.1 Runoff -- 9.18.2 Erosion -- 9.18.3 Leaching -- 9.18.4 Atmosphere Gaseous Losses.
9.18.5 Removal of Trees -- 9.19 Increase Nutrient Uptake by Agroforestry -- 9.20 Through Nitrogen Fixation Agroforestry Systems Increase Inputs to the Plant-Soil System -- 9.21 Erosion Control by Agroforestry -- 9.22 Agroforestry Can Recycle Nutrients -- 9.23 How to Improve Nutrient Cycling Efficiency from Management? -- 9.24 Conclusion -- References -- Chapter 10: Carbon Sequestration in Agroforestry: Enhancement of Both Soil Organic and Inorganic Carbon -- 10.1 Introduction -- 10.2 Mechanisms of Carbon Sequestration in Agroforestry Systems -- 10.3 Soil Carbon Sequestration -- 10.4 Carbon Stock Measurement -- 10.4.1 Aboveground -- 10.4.2 Belowground Estimation -- 10.5 Carbon Stocks in Agroforestry Systems in India -- 10.5.1 Agri-Silvicultural systems -- 10.5.1.1 Carbon Sequestration in Tree Biomass -- 10.5.1.2 Enhancement of Soil Organic Carbon -- 10.5.2 Silvipastoral Systems -- 10.5.2.1 Carbon Sequestration in Tree Biomass -- 10.5.2.2 Carbon Stored in Block and Boundary Plantations -- 10.6 Estimation of Carbon Sequestration Potential for Agroforestry Systems -- 10.6.1 Destructive Method -- 10.6.1.1 Destructive by Weighing -- 10.6.1.2 Destructive with Scaling -- 10.6.2 Non-destructive Algometric Method -- 10.6.2.1 Calculation of Above Ground Biomass (AGB) -- 10.6.2.2 Calculation of Below Ground Biomass (BGB) -- 10.6.2.3 Estimation of Total Biomass (TB) -- 10.6.2.4 Estimation of Weight of Carbon (C) -- 10.6.2.5 Estimation of Total Quantity of Carbon Dioxide -- 10.7 Conclusion -- References -- Chapter 11: Sustainable Forest Management (SFM) for C Footprint and Climate Change Mitigation -- 11.1 Introduction -- 11.2 Sustainable Forest Management (SFM) for C Footprint -- 11.3 Sustainable Forest Management (SFM) for Climate Change Mitigation in Tropical and Sub-tropical Regions.
11.4 Sustainable Forest Management (SFM) for Climate Change Mitigation in Temperate Region.
Record Nr. UNINA-9910842285103321
Jatav Hanuman Singh  
Singapore : , : Springer, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Biotechnological Innovations in the Mineral-Metal Industry [[electronic resource] /] / edited by Sandeep Panda, Srabani Mishra, Ata Akcil, Eric D. Van Hullebusch
Biotechnological Innovations in the Mineral-Metal Industry [[electronic resource] /] / edited by Sandeep Panda, Srabani Mishra, Ata Akcil, Eric D. Van Hullebusch
Autore Panda Sandeep
Edizione [1st ed. 2024.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2024
Descrizione fisica 1 online resource (251 pages)
Disciplina 550
Altri autori (Persone) MishraSrabani
AkcilAta
Van HullebuschEric D
Collana Advances in Science, Technology & Innovation, IEREK Interdisciplinary Series for Sustainable Development
Soggetto topico Earth sciences
Geography
Microbial ecology
Mineralogy
Earth Sciences
Earth and Environmental Sciences
Environmental Microbiology
ISBN 3-031-43625-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Microbes, Metal(loid)S and Microbe-Metal(loid) Interactions in the Context of Mining Industry -- Chalcopyrite Dissolution: Challenges -- Bioleaching of Lateritic Nickel Ores -- Microbial Leaching Strategies for Extraction of Rare Earth Elements from Primary and Secondary Resources -- Biotechnological Applications in Spent Lithium-Ion Battery Processing -- Bio-Beneficiation: Relevance to Mineral Processing -- Phosphate Minerals and Applications of Phosphate Solubilising Microorganisms for Extraction of Critical Minerals and Rare Earth Elements -- Role of Bio-Surfactants in Heavy Metal Removal and Mineral Flotation -- Recovery of Metals from Leach Liquors: Biosorption Vs Metal Sulphide Precipitation -- Anaerobic Bioreactor Technology (ABT) for the Treatment of Acid Mine Drainage (AMD) -- Integration Of Bioleaching and Biorefinery Technologies for the Recovery of Base and Critical Elements from Electronic Waste -- Mineral Processing in Bioreactors: Fundamentals and Design Aspects -- Mineral-Metal Wastes (Bio)/Recycling: Compliance with Circular Economy.
Record Nr. UNINA-9910835062403321
Panda Sandeep
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui