Conformal graph directed Markov systems on Carnot groups / / Vasilionis Chousionis, Jeremy Tyson, Mariusz Urbanski |
Autore | Chousionis Vasilionis <1980-> |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , [2020] |
Descrizione fisica | 1 online resource (170 pages) |
Disciplina | 621.4021 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Thermodynamics - Mathematical models
Markov processes Conformal mapping Nilpotent Lie groups Hausdorff measures |
Soggetto genere / forma | Electronic books. |
ISBN | 1-4704-6245-1 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910480439503321 |
Chousionis Vasilionis <1980->
![]() |
||
Providence, Rhode Island : , : American Mathematical Society, , [2020] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Conformal graph directed Markov systems on Carnot groups / / Vasilionis Chousionis, Jeremy Tyson, Mariusz Urbanski |
Autore | Chousionis Vasilionis <1980-> |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , [2020] |
Descrizione fisica | 1 online resource (170 pages) |
Disciplina | 621.4021 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Thermodynamics - Mathematical models
Markov processes Conformal mapping Nilpotent Lie groups Hausdorff measures |
ISBN | 1-4704-6245-1 |
Classificazione | 30L1053C1737C4011J7028A7837B1037C3037D3537F3547H10 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Carnot groups -- Carnot groups of Iwasawa type and conformal mappings -- Metric and geometric properties of conformal maps -- Conformal graph directed Markov systems -- Examples of GDMS in Carnot groups -- Countable alphabet symbolic dynamics : foundations of the thermodynamic formalism -- Hausdorff dimension of limit sets -- Conformal measures and regularity of domains -- Examples revisited -- Finer properties of limit sets : Hausdorff, packing and invariant measures -- Equivalent separation conditions for finite GDMS. |
Record Nr. | UNINA-9910794335503321 |
Chousionis Vasilionis <1980->
![]() |
||
Providence, Rhode Island : , : American Mathematical Society, , [2020] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Conformal graph directed Markov systems on Carnot groups / / Vasilionis Chousionis, Jeremy Tyson, Mariusz Urbanski |
Autore | Chousionis Vasilionis <1980-> |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , [2020] |
Descrizione fisica | 1 online resource (170 pages) |
Disciplina | 621.4021 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Thermodynamics - Mathematical models
Markov processes Conformal mapping Nilpotent Lie groups Hausdorff measures |
ISBN | 1-4704-6245-1 |
Classificazione | 30L1053C1737C4011J7028A7837B1037C3037D3537F3547H10 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Carnot groups -- Carnot groups of Iwasawa type and conformal mappings -- Metric and geometric properties of conformal maps -- Conformal graph directed Markov systems -- Examples of GDMS in Carnot groups -- Countable alphabet symbolic dynamics : foundations of the thermodynamic formalism -- Hausdorff dimension of limit sets -- Conformal measures and regularity of domains -- Examples revisited -- Finer properties of limit sets : Hausdorff, packing and invariant measures -- Equivalent separation conditions for finite GDMS. |
Record Nr. | UNINA-9910812622103321 |
Chousionis Vasilionis <1980->
![]() |
||
Providence, Rhode Island : , : American Mathematical Society, , [2020] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Diophantine approximation and the geometry of limit sets in Gromov hyperbolic metric spaces / / Lior Fishman, David Simmons, Mariusz Urbański |
Autore | Fishman Lior <1964-> |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 2018 |
Descrizione fisica | 1 online resource (150 pages) |
Disciplina | 512.73 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Diophantine analysis
Geometry, Hyperbolic |
Soggetto genere / forma | Electronic books. |
ISBN | 1-4704-4746-0 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910480216703321 |
Fishman Lior <1964->
![]() |
||
Providence, Rhode Island : , : American Mathematical Society, , 2018 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Diophantine approximation and the geometry of limit sets in Gromov hyperbolic metric spaces / / Lior Fishman, David Simmons, Mariusz Urbański |
Autore | Fishman Lior <1964-> |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 2018 |
Descrizione fisica | 1 online resource (150 pages) |
Disciplina | 512.73 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Diophantine analysis
Geometry, Hyperbolic |
ISBN | 1-4704-4746-0 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Gromov hyperbolic metric spaces -- Basic facts about Diophantine approximation -- Schmidt's game and Mcmullen's absolute game -- Partition structures -- Proof of theorem 6.1 (absolute winning of \BA [xi]) -- Proof of theorem 7.1 (generalization of the Jarník-Besicovitch theorem) -- Proof of theorem 8.1 (generalization of Khinchin's theorem) -- Proof of theorem 9.3 (BA{d} has full dimension in \Lr(G)). |
Record Nr. | UNINA-9910793166903321 |
Fishman Lior <1964->
![]() |
||
Providence, Rhode Island : , : American Mathematical Society, , 2018 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Diophantine approximation and the geometry of limit sets in Gromov hyperbolic metric spaces / / Lior Fishman, David Simmons, Mariusz Urbański |
Autore | Fishman Lior <1964-> |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 2018 |
Descrizione fisica | 1 online resource (150 pages) |
Disciplina | 512.73 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Diophantine analysis
Geometry, Hyperbolic |
ISBN | 1-4704-4746-0 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Gromov hyperbolic metric spaces -- Basic facts about Diophantine approximation -- Schmidt's game and Mcmullen's absolute game -- Partition structures -- Proof of theorem 6.1 (absolute winning of \BA [xi]) -- Proof of theorem 7.1 (generalization of the Jarník-Besicovitch theorem) -- Proof of theorem 8.1 (generalization of Khinchin's theorem) -- Proof of theorem 9.3 (BA{d} has full dimension in \Lr(G)). |
Record Nr. | UNINA-9910806940003321 |
Fishman Lior <1964->
![]() |
||
Providence, Rhode Island : , : American Mathematical Society, , 2018 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Thermodynamical formalism and multifractal analysis for meromorphic functions of finite order / / Volker Mayer, Mariusz Urbański |
Autore | Mayer Volker <1964-> |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 2009 |
Descrizione fisica | 1 online resource (107 p.) |
Disciplina | 515.982 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Functions, Meromorphic
Functions of complex variables Fractals |
Soggetto genere / forma | Electronic books. |
ISBN | 1-4704-0568-7 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""Contents""; ""Abstract""; ""Chapter 1. Introduction""; ""Chapter 2. Balanced functions ""; ""2.1. Growth conditions""; ""2.2. The precise form of 2""; ""2.3. Classical families""; ""2.4. Functions with polynomial Schwarzian derivative""; ""2.5. Functions with rational Schwarzian derivative""; ""2.6. Uniform balanced growth""; ""Chapter 3. Transfer operator and Nevanlinna Theory""; ""3.1. Choice of a Riemannian metric and transfer operator""; ""3.2. Nevanlinna Theory and Borel Sums""; ""Chapter 4. Preliminaries, Hyperbolicity and Distortion Properties""
""6.2. Ergodic properties of Gibbs states""""6.3. Decay of correlations and Central Limit Theorem""; ""6.4. Cohomologies and 2=0""; ""6.5. Variational principle""; ""Chapter 7. Regularity of Perron-Frobenius Operators and Topological Pressure""; ""7.1. Analyticity of Perron-Frobenius operators""; ""7.2. Analyticity of pressure""; ""7.3. Derivatives of the pressure function""; ""Chapter 8. Multifractal analysis""; ""8.1. Hausdorff dimension of Gibbs states""; ""8.2. The temperature function""; ""8.3. Multifractal analysis"" ""Chapter 9. Multifractal Analysis of Analytic Families of Dynamically Regular Functions""""9.1. Extensions of harmonic functions""; ""9.2. Holomorphic families and quasi-conformal conjugacies""; ""9.3. Real analyticity of the multifractal function""; ""Bibliography""; ""Index"" |
Record Nr. | UNINA-9910480869803321 |
Mayer Volker <1964->
![]() |
||
Providence, Rhode Island : , : American Mathematical Society, , 2009 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Thermodynamical formalism and multifractal analysis for meromorphic functions of finite order / / Volker Mayer, Mariusz Urbański |
Autore | Mayer Volker <1964-> |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 2009 |
Descrizione fisica | 1 online resource (107 p.) |
Disciplina | 515.982 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Functions, Meromorphic
Functions of complex variables Fractals |
ISBN | 1-4704-0568-7 |
Classificazione | SI 130 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""Contents""; ""Abstract""; ""Chapter 1. Introduction""; ""Chapter 2. Balanced functions ""; ""2.1. Growth conditions""; ""2.2. The precise form of 2""; ""2.3. Classical families""; ""2.4. Functions with polynomial Schwarzian derivative""; ""2.5. Functions with rational Schwarzian derivative""; ""2.6. Uniform balanced growth""; ""Chapter 3. Transfer operator and Nevanlinna Theory""; ""3.1. Choice of a Riemannian metric and transfer operator""; ""3.2. Nevanlinna Theory and Borel Sums""; ""Chapter 4. Preliminaries, Hyperbolicity and Distortion Properties""
""6.2. Ergodic properties of Gibbs states""""6.3. Decay of correlations and Central Limit Theorem""; ""6.4. Cohomologies and 2=0""; ""6.5. Variational principle""; ""Chapter 7. Regularity of Perron-Frobenius Operators and Topological Pressure""; ""7.1. Analyticity of Perron-Frobenius operators""; ""7.2. Analyticity of pressure""; ""7.3. Derivatives of the pressure function""; ""Chapter 8. Multifractal analysis""; ""8.1. Hausdorff dimension of Gibbs states""; ""8.2. The temperature function""; ""8.3. Multifractal analysis"" ""Chapter 9. Multifractal Analysis of Analytic Families of Dynamically Regular Functions""""9.1. Extensions of harmonic functions""; ""9.2. Holomorphic families and quasi-conformal conjugacies""; ""9.3. Real analyticity of the multifractal function""; ""Bibliography""; ""Index"" |
Record Nr. | UNINA-9910788856903321 |
Mayer Volker <1964->
![]() |
||
Providence, Rhode Island : , : American Mathematical Society, , 2009 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Thermodynamical formalism and multifractal analysis for meromorphic functions of finite order / / Volker Mayer, Mariusz Urbański |
Autore | Mayer Volker <1964-> |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 2009 |
Descrizione fisica | 1 online resource (107 p.) |
Disciplina | 515.982 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Functions, Meromorphic
Functions of complex variables Fractals |
ISBN | 1-4704-0568-7 |
Classificazione | SI 130 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""Contents""; ""Abstract""; ""Chapter 1. Introduction""; ""Chapter 2. Balanced functions ""; ""2.1. Growth conditions""; ""2.2. The precise form of 2""; ""2.3. Classical families""; ""2.4. Functions with polynomial Schwarzian derivative""; ""2.5. Functions with rational Schwarzian derivative""; ""2.6. Uniform balanced growth""; ""Chapter 3. Transfer operator and Nevanlinna Theory""; ""3.1. Choice of a Riemannian metric and transfer operator""; ""3.2. Nevanlinna Theory and Borel Sums""; ""Chapter 4. Preliminaries, Hyperbolicity and Distortion Properties""
""6.2. Ergodic properties of Gibbs states""""6.3. Decay of correlations and Central Limit Theorem""; ""6.4. Cohomologies and 2=0""; ""6.5. Variational principle""; ""Chapter 7. Regularity of Perron-Frobenius Operators and Topological Pressure""; ""7.1. Analyticity of Perron-Frobenius operators""; ""7.2. Analyticity of pressure""; ""7.3. Derivatives of the pressure function""; ""Chapter 8. Multifractal analysis""; ""8.1. Hausdorff dimension of Gibbs states""; ""8.2. The temperature function""; ""8.3. Multifractal analysis"" ""Chapter 9. Multifractal Analysis of Analytic Families of Dynamically Regular Functions""""9.1. Extensions of harmonic functions""; ""9.2. Holomorphic families and quasi-conformal conjugacies""; ""9.3. Real analyticity of the multifractal function""; ""Bibliography""; ""Index"" |
Record Nr. | UNINA-9910811628903321 |
Mayer Volker <1964->
![]() |
||
Providence, Rhode Island : , : American Mathematical Society, , 2009 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|