Body area networks - smart IoT and big data for intelligent health : 16th EAI International Conference, BODYNETS 2021, virtual event, October 25-26, 2021 / / Masood Ur-Rehman, Ahmed Zoha, editors |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2022] |
Descrizione fisica | 1 online resource (325 pages) |
Disciplina | 572.80285 |
Collana | Lecture notes of the Institute for Computer Sciences, Social Informatics, and Telecommunications Engineering |
Soggetto topico |
Bioinformatics
Biosensors Body area networks (Electronics) |
ISBN | 3-030-95593-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Conference Organization -- Contents -- Human Activity Recognition -- Data Fusion for Human Activity Recognition Based on RF Sensing and IMU Sensor -- 1 Introduction -- 2 Materials and Methods -- 2.1 IMU State Modeling -- 2.2 USRP State Modeling -- 3 The Proposed Structure Matrix to Data Fusion -- 3.1 Principal Component Analysis for Feature Extraction -- 4 Experimental Evaluation -- 5 Conclusion -- References -- Indoor Activity Position and Direction Detection Using Software Defined Radios -- 1 Introduction -- 2 Materials and Methods -- 2.1 Technical Specifications -- 2.2 Experimental Design -- 3 Results and Discussion -- 3.1 Detection Accuracy vs. Activity Position -- 3.2 Detecting Position, Direction of Movement, and Occupancy -- 4 Conclusion -- References -- Monitoring Discrete Activities of Daily Living of Young and Older Adults Using 5.8GHz Frequency Modulated Continuous Wave Radar and ResNet Algorithm -- 1 Introduction -- 2 Methodology -- 2.1 Data Acquisition -- 2.2 Classification Using Residual Neural Network -- 3 Results and Discussion -- 4 Conclusions and Future Work -- References -- Elderly Care - Human Activity Recognition Using Radar with an Open Dataset and Hybrid Maps -- 1 Introduction -- 1.1 Context -- 1.2 Current Research Progress -- 2 Methodology and Implementation -- 2.1 Dataset Information -- 2.2 Pre-processing -- 2.3 Feature Extraction and Classification -- 3 Results and Discussion -- 3.1 Hardware and Software Environment -- 3.2 Classification Results -- 3.3 Discussion -- 4 Conclusions and Future Work -- References -- Wireless Sensing for Human Activity Recognition Using USRP -- 1 Introduction -- 2 Related Work -- 3 Methodology -- 3.1 Data Collection -- 3.2 Machine Learning -- 4 Results and Discussion -- 4.1 Machine Learning Algorithms Comparison -- 4.2 Real Time Classification -- 4.3 Benchmark Dataset.
5 Conclusion -- References -- Real-Time People Counting Using IR-UWB Radar -- 1 Introduction -- 2 Methodology -- 2.1 People Counting Algorithm -- 2.2 Experiment -- 3 Results -- 4 Conclusion -- References -- Bespoke Simulator for Human Activity Classification with Bistatic Radar -- 1 Introduction -- 2 Radar Simulation -- 3 Classification -- 3.1 Feature Extraction -- 3.2 Classification Algorithm -- 4 Classification Results -- 4.1 Monostatic Results -- 4.2 Bistatic Results -- 5 Discussion -- 5.1 Monostatic -- 5.2 Bistatic -- 6 Conclusion -- References -- Sensing for Healthcare -- Detecting Alzheimer's Disease Using Machine Learning Methods -- 1 Introduction -- 2 Related Work -- 3 Methodology -- 3.1 Machine Learning Methods -- 3.2 Deep Learning Methods -- 4 Experimental Results and Discussions -- 4.1 Discussion -- 5 Conclusion -- References -- FPGA-Based Realtime Detection of Freezing of Gait of Parkinson Patients -- 1 Introduction -- 2 Related Work -- 2.1 Overview of Recent Methods of Detecting FoG -- 2.2 Requirements of FoG Detection Methods for Wearable Devices -- 2.3 Field Programmable Gate Arrays (FPGAs) for Inference of Neural Networks -- 3 Methods -- 3.1 VitisAI to Run Neural Networks on FPGA -- 3.2 Hardware-Aware Implementation of a Temporal Convolutional Network for FoG Detection -- 4 Experiments -- 4.1 Dataset Description -- 4.2 Performance Evaluation -- 4.3 Hardware Platform Details -- 5 Conclusions -- References -- Received WiFi Signal Strength Monitoring for Contactless Body Temperature Classification -- 1 Introduction -- 2 Related Work -- 2.1 WiFi for Localization -- 2.2 RF Monitoring of Human Vital Signs and Activity -- 2.3 Temperature Studies on Wireless Network -- 2.4 Temperature Sensing Technology -- 3 Approach Overview -- 4 Experimental Set-Up -- 5 Experiments -- 5.1 Water Bowl Experiments -- 5.2 Submerged Water Bowl Experiments. 5.3 Hand Experiments -- 5.4 Hand Temperature Classification -- 6 Conclusion -- References -- A Preliminary Study of RF Propagation for High Data Rate Brain Telemetry -- 1 Introduction -- 2 Simulation Environment and Antenna Models -- 2.1 Simulation Model -- 2.2 Mini-horn Antenna -- 2.3 Implant Antenna -- 3 Simulation Results -- 3.1 Power Flow Results for the On-Body Antenna Location 1 -- 3.2 Channel Attenuation for the On-Body Antenna Location 1 -- 3.3 Power Flow Results for the On-Body Antenna Location 2 -- 4 Conclusions and Future Work -- References -- Anomalous Pattern Recognition in Vital Health Signals via Multimodal Fusion -- 1 Introduction -- 2 Related Works -- 2.1 Health Anomalous Pattern Recognition -- 2.2 Vital Signal Sensing Modality -- 3 Methodology -- 3.1 Signal Preprocessing -- 3.2 Multimodal Feature Extraction -- 3.3 Anomalous Pattern Recognition -- 4 Experiments -- 4.1 Dataset -- 4.2 Prototype Implementation: VitalChair -- 4.3 Performance Evaluation -- 4.4 Comparative Study -- 5 Conclusion -- References -- Real-Time Visual Respiration Tracking with Radar Sensors -- 1 Introduction -- 2 Methods -- 2.1 Sensor System -- 2.2 Sensor Overview -- 2.3 Experimental Protocol -- 2.4 Signal Processing -- 3 Results and Discussion -- 4 Conclusion -- References -- Body-Area Sensing in Maternity Care: Evaluation of Commercial Wristbands for Pre-birth Stress Management -- 1 Introduction -- 2 Stress Reduction Project Vision -- 3 Technological View on Body Sensing with Wristbands -- 3.1 Data Architecture -- 3.2 Other Requirements for Wearables -- 3.3 Considerations in the Area of Software Engineering -- 4 Evaluation of Commercial Wristbands -- 4.1 Technical Qualities, Sensors and Reliability -- 4.2 Ease of Integration -- 4.3 Data Protection and Data Sharing -- 5 Conclusion -- References. Home-Based Pulmonary Rehabilitation of COPD Individuals Using the Wearable Respeck Monitor -- 1 Introduction -- 2 Related Work -- 3 Pulmonary Rehabilitation System -- 3.1 The Apps -- 4 The Design -- 5 Analysis and Results -- 5.1 CAT Score Prediction Using Exercise Data -- 6 Conclusion -- References -- Data Analytics for Healthcare Systems -- SVM Time Series Classification of Selected Gait Abnormalities -- 1 Introduction -- 2 Gait Data Collection -- 2.1 Data Collection of Simulated Gait Abnormalities -- 3 SVM Performance Assessment -- 4 Results -- 5 Discussion and Conclusion -- References -- Comparing the Performance of Different Classifiers for Posture Detection -- 1 Introduction -- 2 Related Work -- 3 Methodology -- 3.1 Classifiers -- 4 Results and Discussion -- 5 Conclusion -- References -- Distance Estimation for Molecular Communication in Blood Vessel -- 1 Introduction -- 2 System Model -- 2.1 Model of Blood Velocity -- 2.2 System Model -- 3 Distance Estimation Scheme -- 3.1 Calculate T and -- 3.2 Distance Estimation -- 4 Simulation Results -- 5 Conclusion -- References -- Innovating the Future Healthcare Systems -- Opti-Speech-VMT: Implementation and Evaluation -- 1 Introduction -- 2 Related Work -- 3 Opti-Speech-VMT -- 3.1 General Features -- 3.2 Target Features -- 4 Measurement of Latency -- 4.1 Visual Feedback Task -- 4.2 Results -- 4.3 Conclusion -- 5 Future Work -- References -- A Systematic Study of the Influence of Various User Specific and Environmental Factors on Wearable Human Body Capacitance Sensing -- 1 Introduction -- 1.1 Paper Aims -- 1.2 Related Work -- 2 Sensing Approach -- 3 Exploration of HBC in a Static State -- 4 HBC in Real-Time and Dynamic State -- 4.1 HBC While Walking -- 4.2 Classification of Floor Surface Type -- 5 Other Potential Use Cases -- 5.1 Exact Step Counting -- 5.2 Gait Partitioning -- 5.3 Touch Sensing. 5.4 Respiration Monitoring -- 6 Conclusion -- References -- Software Design and Development of an Appointment Booking System: A Design Study -- 1 Introduction -- 2 Related Work -- 3 Design Process -- 3.1 Relationships in the Use Case (Design Decisions) -- 3.2 Class Diagram (Use STARUML) -- 3.3 Sequence Diagram (Use STARUML) -- 3.4 Program Prototype -- 4 Discussion -- 4.1 Critical Discussions: Software Development Life Cycle (SDLC) -- 4.2 Agile Methodology Within the Program Solution -- 4.3 A Critical Reflection: Professional, Security and Ethical Issues -- 5 Conclusion -- Appendix A -- Appendix B -- Appendix C -- References -- Robust Continuous User Authentication System Using Long Short Term Memory Network for Healthcare -- 1 Introduction -- 2 Background -- 3 System Methodology -- 3.1 Keystroke Sequence Sampling -- 3.2 System Model -- 4 Results and Discussion -- 4.1 Aggregated Results of Architecture 1: Per Frame Model -- 4.2 Aggregated Results of Architecture 2: Integrated Model -- 4.3 Discussion of Results for Architecture 1 and Architecture 2 -- 4.4 Results in Terms of EER -- 5 Conclusion -- References -- When Federated Learning Meets Vision: An Outlook on Opportunities and Challenges -- 1 Introduction -- 2 Preliminaries and Overview -- 2.1 Scale of Federation -- 2.2 Data Partitioning -- 3 Vision-Aided Applications Enabled by FL -- 3.1 Smart Heath-Care System -- 3.2 Smart Homes -- 3.3 Smart Cities -- 4 Challenges and Future Research -- 4.1 Privacy and Security -- 4.2 Data Heterogeneity -- 4.3 Asynchronous Aggregation Mechanism -- 4.4 Scale of Federation -- 4.5 Accountability and Incentive Mechanism -- 5 Conclusions -- References -- Author Index. |
Record Nr. | UNINA-9910544848503321 |
Cham, Switzerland : , : Springer, , [2022] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Body area networks - smart IoT and big data for intelligent health : 16th EAI International Conference, BODYNETS 2021, virtual event, October 25-26, 2021 / / Masood Ur-Rehman, Ahmed Zoha, editors |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2022] |
Descrizione fisica | 1 online resource (325 pages) |
Disciplina | 572.80285 |
Collana | Lecture notes of the Institute for Computer Sciences, Social Informatics, and Telecommunications Engineering |
Soggetto topico |
Bioinformatics
Biosensors Body area networks (Electronics) |
ISBN | 3-030-95593-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Conference Organization -- Contents -- Human Activity Recognition -- Data Fusion for Human Activity Recognition Based on RF Sensing and IMU Sensor -- 1 Introduction -- 2 Materials and Methods -- 2.1 IMU State Modeling -- 2.2 USRP State Modeling -- 3 The Proposed Structure Matrix to Data Fusion -- 3.1 Principal Component Analysis for Feature Extraction -- 4 Experimental Evaluation -- 5 Conclusion -- References -- Indoor Activity Position and Direction Detection Using Software Defined Radios -- 1 Introduction -- 2 Materials and Methods -- 2.1 Technical Specifications -- 2.2 Experimental Design -- 3 Results and Discussion -- 3.1 Detection Accuracy vs. Activity Position -- 3.2 Detecting Position, Direction of Movement, and Occupancy -- 4 Conclusion -- References -- Monitoring Discrete Activities of Daily Living of Young and Older Adults Using 5.8GHz Frequency Modulated Continuous Wave Radar and ResNet Algorithm -- 1 Introduction -- 2 Methodology -- 2.1 Data Acquisition -- 2.2 Classification Using Residual Neural Network -- 3 Results and Discussion -- 4 Conclusions and Future Work -- References -- Elderly Care - Human Activity Recognition Using Radar with an Open Dataset and Hybrid Maps -- 1 Introduction -- 1.1 Context -- 1.2 Current Research Progress -- 2 Methodology and Implementation -- 2.1 Dataset Information -- 2.2 Pre-processing -- 2.3 Feature Extraction and Classification -- 3 Results and Discussion -- 3.1 Hardware and Software Environment -- 3.2 Classification Results -- 3.3 Discussion -- 4 Conclusions and Future Work -- References -- Wireless Sensing for Human Activity Recognition Using USRP -- 1 Introduction -- 2 Related Work -- 3 Methodology -- 3.1 Data Collection -- 3.2 Machine Learning -- 4 Results and Discussion -- 4.1 Machine Learning Algorithms Comparison -- 4.2 Real Time Classification -- 4.3 Benchmark Dataset.
5 Conclusion -- References -- Real-Time People Counting Using IR-UWB Radar -- 1 Introduction -- 2 Methodology -- 2.1 People Counting Algorithm -- 2.2 Experiment -- 3 Results -- 4 Conclusion -- References -- Bespoke Simulator for Human Activity Classification with Bistatic Radar -- 1 Introduction -- 2 Radar Simulation -- 3 Classification -- 3.1 Feature Extraction -- 3.2 Classification Algorithm -- 4 Classification Results -- 4.1 Monostatic Results -- 4.2 Bistatic Results -- 5 Discussion -- 5.1 Monostatic -- 5.2 Bistatic -- 6 Conclusion -- References -- Sensing for Healthcare -- Detecting Alzheimer's Disease Using Machine Learning Methods -- 1 Introduction -- 2 Related Work -- 3 Methodology -- 3.1 Machine Learning Methods -- 3.2 Deep Learning Methods -- 4 Experimental Results and Discussions -- 4.1 Discussion -- 5 Conclusion -- References -- FPGA-Based Realtime Detection of Freezing of Gait of Parkinson Patients -- 1 Introduction -- 2 Related Work -- 2.1 Overview of Recent Methods of Detecting FoG -- 2.2 Requirements of FoG Detection Methods for Wearable Devices -- 2.3 Field Programmable Gate Arrays (FPGAs) for Inference of Neural Networks -- 3 Methods -- 3.1 VitisAI to Run Neural Networks on FPGA -- 3.2 Hardware-Aware Implementation of a Temporal Convolutional Network for FoG Detection -- 4 Experiments -- 4.1 Dataset Description -- 4.2 Performance Evaluation -- 4.3 Hardware Platform Details -- 5 Conclusions -- References -- Received WiFi Signal Strength Monitoring for Contactless Body Temperature Classification -- 1 Introduction -- 2 Related Work -- 2.1 WiFi for Localization -- 2.2 RF Monitoring of Human Vital Signs and Activity -- 2.3 Temperature Studies on Wireless Network -- 2.4 Temperature Sensing Technology -- 3 Approach Overview -- 4 Experimental Set-Up -- 5 Experiments -- 5.1 Water Bowl Experiments -- 5.2 Submerged Water Bowl Experiments. 5.3 Hand Experiments -- 5.4 Hand Temperature Classification -- 6 Conclusion -- References -- A Preliminary Study of RF Propagation for High Data Rate Brain Telemetry -- 1 Introduction -- 2 Simulation Environment and Antenna Models -- 2.1 Simulation Model -- 2.2 Mini-horn Antenna -- 2.3 Implant Antenna -- 3 Simulation Results -- 3.1 Power Flow Results for the On-Body Antenna Location 1 -- 3.2 Channel Attenuation for the On-Body Antenna Location 1 -- 3.3 Power Flow Results for the On-Body Antenna Location 2 -- 4 Conclusions and Future Work -- References -- Anomalous Pattern Recognition in Vital Health Signals via Multimodal Fusion -- 1 Introduction -- 2 Related Works -- 2.1 Health Anomalous Pattern Recognition -- 2.2 Vital Signal Sensing Modality -- 3 Methodology -- 3.1 Signal Preprocessing -- 3.2 Multimodal Feature Extraction -- 3.3 Anomalous Pattern Recognition -- 4 Experiments -- 4.1 Dataset -- 4.2 Prototype Implementation: VitalChair -- 4.3 Performance Evaluation -- 4.4 Comparative Study -- 5 Conclusion -- References -- Real-Time Visual Respiration Tracking with Radar Sensors -- 1 Introduction -- 2 Methods -- 2.1 Sensor System -- 2.2 Sensor Overview -- 2.3 Experimental Protocol -- 2.4 Signal Processing -- 3 Results and Discussion -- 4 Conclusion -- References -- Body-Area Sensing in Maternity Care: Evaluation of Commercial Wristbands for Pre-birth Stress Management -- 1 Introduction -- 2 Stress Reduction Project Vision -- 3 Technological View on Body Sensing with Wristbands -- 3.1 Data Architecture -- 3.2 Other Requirements for Wearables -- 3.3 Considerations in the Area of Software Engineering -- 4 Evaluation of Commercial Wristbands -- 4.1 Technical Qualities, Sensors and Reliability -- 4.2 Ease of Integration -- 4.3 Data Protection and Data Sharing -- 5 Conclusion -- References. Home-Based Pulmonary Rehabilitation of COPD Individuals Using the Wearable Respeck Monitor -- 1 Introduction -- 2 Related Work -- 3 Pulmonary Rehabilitation System -- 3.1 The Apps -- 4 The Design -- 5 Analysis and Results -- 5.1 CAT Score Prediction Using Exercise Data -- 6 Conclusion -- References -- Data Analytics for Healthcare Systems -- SVM Time Series Classification of Selected Gait Abnormalities -- 1 Introduction -- 2 Gait Data Collection -- 2.1 Data Collection of Simulated Gait Abnormalities -- 3 SVM Performance Assessment -- 4 Results -- 5 Discussion and Conclusion -- References -- Comparing the Performance of Different Classifiers for Posture Detection -- 1 Introduction -- 2 Related Work -- 3 Methodology -- 3.1 Classifiers -- 4 Results and Discussion -- 5 Conclusion -- References -- Distance Estimation for Molecular Communication in Blood Vessel -- 1 Introduction -- 2 System Model -- 2.1 Model of Blood Velocity -- 2.2 System Model -- 3 Distance Estimation Scheme -- 3.1 Calculate T and -- 3.2 Distance Estimation -- 4 Simulation Results -- 5 Conclusion -- References -- Innovating the Future Healthcare Systems -- Opti-Speech-VMT: Implementation and Evaluation -- 1 Introduction -- 2 Related Work -- 3 Opti-Speech-VMT -- 3.1 General Features -- 3.2 Target Features -- 4 Measurement of Latency -- 4.1 Visual Feedback Task -- 4.2 Results -- 4.3 Conclusion -- 5 Future Work -- References -- A Systematic Study of the Influence of Various User Specific and Environmental Factors on Wearable Human Body Capacitance Sensing -- 1 Introduction -- 1.1 Paper Aims -- 1.2 Related Work -- 2 Sensing Approach -- 3 Exploration of HBC in a Static State -- 4 HBC in Real-Time and Dynamic State -- 4.1 HBC While Walking -- 4.2 Classification of Floor Surface Type -- 5 Other Potential Use Cases -- 5.1 Exact Step Counting -- 5.2 Gait Partitioning -- 5.3 Touch Sensing. 5.4 Respiration Monitoring -- 6 Conclusion -- References -- Software Design and Development of an Appointment Booking System: A Design Study -- 1 Introduction -- 2 Related Work -- 3 Design Process -- 3.1 Relationships in the Use Case (Design Decisions) -- 3.2 Class Diagram (Use STARUML) -- 3.3 Sequence Diagram (Use STARUML) -- 3.4 Program Prototype -- 4 Discussion -- 4.1 Critical Discussions: Software Development Life Cycle (SDLC) -- 4.2 Agile Methodology Within the Program Solution -- 4.3 A Critical Reflection: Professional, Security and Ethical Issues -- 5 Conclusion -- Appendix A -- Appendix B -- Appendix C -- References -- Robust Continuous User Authentication System Using Long Short Term Memory Network for Healthcare -- 1 Introduction -- 2 Background -- 3 System Methodology -- 3.1 Keystroke Sequence Sampling -- 3.2 System Model -- 4 Results and Discussion -- 4.1 Aggregated Results of Architecture 1: Per Frame Model -- 4.2 Aggregated Results of Architecture 2: Integrated Model -- 4.3 Discussion of Results for Architecture 1 and Architecture 2 -- 4.4 Results in Terms of EER -- 5 Conclusion -- References -- When Federated Learning Meets Vision: An Outlook on Opportunities and Challenges -- 1 Introduction -- 2 Preliminaries and Overview -- 2.1 Scale of Federation -- 2.2 Data Partitioning -- 3 Vision-Aided Applications Enabled by FL -- 3.1 Smart Heath-Care System -- 3.2 Smart Homes -- 3.3 Smart Cities -- 4 Challenges and Future Research -- 4.1 Privacy and Security -- 4.2 Data Heterogeneity -- 4.3 Asynchronous Aggregation Mechanism -- 4.4 Scale of Federation -- 4.5 Accountability and Incentive Mechanism -- 5 Conclusions -- References -- Author Index. |
Record Nr. | UNISA-996464534903316 |
Cham, Switzerland : , : Springer, , [2022] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Interference mitigation in device-to-device communications / / edited by Masood Ur Rehman, Ghazanfar Ali Safdar, Mohammad Asad Rehman Chaudhry |
Pubbl/distr/stampa | Hoboken, New Jersey : , : John Wiley & Sons, Incorporated, , [2022] |
Descrizione fisica | 1 online resource (243 pages) |
Disciplina | 621.384 |
Soggetto topico |
Wireless communication systems
Electromagnetic interference |
ISBN |
1-119-78882-X
1-119-78881-1 1-119-78880-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Title Page -- Copyright -- Contents -- Preface -- Acknowledgments -- About the Editors -- List of Contributors -- Chapter 1 Introduction to D2D Communications -- 1.1 D2D Communication -- 1.2 Evolution of D2D Communication -- 1.3 D2D Communication in Cellular Spectrum -- 1.4 Classification of D2D Communication -- 1.5 Challenges in D2D Implementation -- 1.6 Summary -- References -- Chapter 2 Interference Mitigation in D2D Communication Underlaying LTE‐A Network -- 2.1 Applicability of D2D Communication -- 2.2 Interference - The Compelling Issue in D2D -- 2.3 Types of D2D Communication -- 2.3.1 In‐Band D2D Communication -- 2.3.1.1 Underlay In‐Band -- 2.3.1.2 Overlay In‐Band -- 2.3.2 Out‐Band D2D Communication -- 2.3.2.1 Network‐Assisted D2D Communication -- 2.3.2.2 Autonomous D2D Communication -- 2.4 D2D Communication Underlaying Cellular Network - The Challenges -- 2.4.1 Device Discovery -- 2.4.2 Mode Selection -- 2.4.3 Radio Resource Management -- 2.4.4 Modification to LTE‐A Architecture -- 2.4.5 Security in D2D -- 2.4.6 Mobility Management -- 2.5 Interference in D2D -- 2.5.1 Power Control Techniques -- 2.5.2 Radio Resource Allocation Techniques -- 2.5.3 Joint Power Control and Radio Resource Allocation Techniques -- 2.5.4 Spectrum Splitting Techniques -- 2.5.5 Other Interference Mitigation Techniques -- 2.5.6 Multiple‐Input Multiple‐Output Techniques -- 2.5.7 Comparative Analysis of D2D Interference Mitigation Techniques -- 2.6 Summary -- References -- Chapter 3 Rethinking D2D Interference: Beyond the Past -- 3.1 Interference Manipulation -- 3.1.1 Example -- 3.2 Formulation of Interference Manipulation Problem -- 3.3 Matrix Rank Minimization: A Way to Manipulate Interference -- 3.3.1 Reduction of Interference Manipulation to Matrix Rank Minimization -- 3.3.2 Minimum Rank Matrix to Transmission Scheme -- 3.3.3 Does the Field Size Matter?.
3.4 Interference Manipulation: A Boolean Satisfiability Approach -- 3.5 Interference Manipulation: Index Coding Perspective -- 3.5.1 Interference Manipulation Is NP‐hard -- 3.5.2 An Efficient Solution for Interference Manipulation -- 3.6 Summary -- References -- Chapter 4 User Pairing Scheme for Efficient D2D Content Delivery in Cellular Networks -- 4.1 D2D Content Delivery -- 4.2 D2D Content Delivery Architecture -- 4.2.1 Network Model -- 4.2.2 Channel Model -- 4.2.3 Content Delivery Model -- 4.3 D2D Content Delivery Strategies -- 4.3.1 Pairing Range -- 4.3.2 Energy Efficiency for Multicast and Unicast -- 4.3.3 Caching and Delivery -- 4.4 D2D Delivery Mode Selection -- 4.5 Performance Evaluation -- 4.6 Summary -- References -- Chapter 5 Resource Allocation for NOMA‐based D2D Systems Coexisting with Cellular Networks -- 5.1 NOMA‐based D2D Systems -- 5.2 System Model and Performance Analysis -- 5.2.1 System Model and Assumptions -- 5.2.2 Capacity Analysis of D2D and Cellular Networks -- 5.2.2.1 Uplink Cellular Networks Transmission -- 5.2.2.2 Downlink NOMA‐D2D Transmission -- 5.3 Joint Subchannel Assignment and Power Control for D2D Communication -- 5.3.1 Subchannel Assignment Scheme -- 5.3.2 Power Control Scheme -- 5.4 Optimization of D2D Device Pairing -- 5.5 Results and Discussion -- 5.5.1 Channel Model -- 5.5.2 Performance Evaluation -- 5.6 Summary -- References -- Chapter 6 Distributed Multi‐Agent RL‐Based Autonomous Spectrum Allocation in D2D‐Enabled Multi‐Tier HetNets -- 6.1 D2D Resource Allocation Methods -- 6.2 Reinforcement Q‐Learning -- 6.3 System Model -- 6.4 Resource Allocation in Multi‐tier D2D Communication -- 6.4.1 Autonomous Spectrum Allocation Scheme -- 6.5 Performance Evaluation -- 6.5.1 Performance of D2D Users -- 6.5.2 Performance of Cellular Users -- 6.5.3 Coverage Analysis -- 6.5.4 Computational Time Analysis. 6.5.5 Memory Requirements -- 6.5.6 Effect of Base Stations Density -- 6.5.7 Effect of Network Tiers -- 6.6 Summary -- References -- Chapter 7 Adaptive Interference Aware Device‐to‐Device‐Enabled Unmanned Aerial Vehicle Communications -- 7.1 Key Elements in D2D Communication -- 7.1.1 D2D Network Discovery -- 7.1.2 SWIPT for D2D -- 7.1.3 Resource Allocation -- 7.1.4 3GPP Standardization -- 7.2 Unmanned Aerial Vehicles in D2D -- 7.2.1 Key Challenges in UAV‐based D2D -- 7.2.2 Transmission over PC5 Interface for UAV‐based D2D Discovery -- 7.2.3 Interference in UAV‐based D2D -- 7.3 Summary -- References -- Chapter 8 Emergency Device‐to‐Device Communication: Applicability, Case Studies and Interference Mitigation -- 8.1 Emergency D2D Communication -- 8.2 Approaches for Efficient Emergency D2D Communication -- 8.3 Emergency D2D Communication: Case Studies -- 8.4 Interference Mitigation in Emergency D2D Communication -- 8.4.1 Radiated Power Management -- 8.4.2 Frequency Allocation -- 8.4.2.1 Hybrid Schemes for Power Control and Intelligent Frequency Allocation -- 8.4.3 Time Division Multiplexing (TDM) -- 8.4.4 Adjacent Channel Interference Cancellation in DSRC -- 8.4.5 Interference Mitigation through Multiple Antennas (MIMO) -- 8.4.5.1 Beam Steering in 3GPP 5G NR Supported Vehicular Systems -- 8.5 Summary -- References -- Chapter 9 Disaster Management Using D2D Communication With Power Transfer and Clustering Techniques -- 9.1 D2D Communication in Disaster Management -- 9.2 D2D Communication in Disaster Management: Key Considerations -- 9.3 D2D Disaster Management System Architecture -- 9.3.1 Time Switching‐Based Protocol -- 9.3.2 Network Configuration -- 9.3.3 Outage Probability for Mode Selection -- 9.4 Power Transfer Using Relaying and Clustering in D2D Disaster Management -- 9.4.1 System Model -- 9.4.2 Performance Evaluation -- 9.4.2.1 Energy Calculation. 9.5 Results and Discussion -- 9.6 Summary -- References -- Chapter 10 Road Ahead for D2D Communications -- 10.1 Future Prospects and Challenges -- 10.1.1 Spectrum Sharing and Coexistence -- 10.1.2 Standardization -- 10.1.3 Secure Communication -- 10.1.4 Energy Consumption and Energy Harvesting -- 10.1.5 Interference Management -- 10.1.6 Resource Allocation -- 10.1.7 Device Discovery -- 10.1.8 Handover -- 10.1.9 Network Slicing -- 10.1.10 D2D in Vehicular Communications -- 10.1.11 D2D in Disaster Management -- 10.1.12 D2D at Millimeter Wave Frequencies -- 10.1.13 D2D and Social Networks -- 10.1.14 D2D and Visible Light Communication (VLC) -- References -- Index -- EULA. |
Record Nr. | UNINA-9910830189203321 |
Hoboken, New Jersey : , : John Wiley & Sons, Incorporated, , [2022] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Low electromagnetic field exposure wireless devices : fundamentals and recent advances / / edited by Masood Ur Rehman, Muhammad Ali Jamshed |
Pubbl/distr/stampa | Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2023] |
Descrizione fisica | 1 online resource (259 pages) |
Disciplina | 621.38411 |
Soggetto topico |
Electromagnetic waves
Wireless communication systems Electromagnetic fields |
ISBN |
1-119-90919-8
1-119-90917-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Title Page -- Copyright -- Contents -- Editor Biography -- List of Contributors -- Preface -- Chapter 1 Electromagnetic Field Exposure: Fundamentals and Key Practices -- 1.1 Introduction -- 1.2 EMF Metric and Evaluation Framework -- 1.2.1 EMF Exposure Factors -- 1.2.1.1 Transmit Antenna Regions -- 1.2.1.2 Transmit Antenna Characteristics -- 1.2.1.3 Duration of Exposure -- 1.2.1.4 Electrical Properties of Biological Tissues -- 1.2.2 EMF Exposure Metrics -- 1.2.2.1 Specific Absorption Rate -- 1.2.2.2 Power Density -- 1.2.2.3 Exposure‐Ratio -- 1.2.2.4 Dose -- 1.2.2.5 Composite/Generic Metric of EMF Exposure -- 1.3 Application of Metric for Setting Guidelines/Limits and Reducing Exposure -- 1.3.1 SAR Reduction -- 1.3.2 PD Reduction -- 1.3.3 Exposure‐Ratio Reduction -- 1.3.4 Dose Reduction -- 1.3.5 Composite EMF Exposure Reduction -- 1.4 Conclusion -- References -- Chapter 2 Exposure to Electromagnetic Fields Emitted from Wireless Devices: Mechanisms and Assessment Methods -- 2.1 Fundamentals of EMF Interactions with the Human Body -- 2.1.1 Thermal Effect -- 2.1.2 Non‐thermal Effects -- 2.2 Physical Models to Represent the Interaction of EMFs with Biological Tissue -- 2.2.1 Interaction Mechanisms -- 2.2.1.1 Effects of Bound Charges -- 2.2.1.2 Effects of Dipole Orientations -- 2.2.1.3 Drift of Conduction Charges -- 2.2.2 Dielectric Properties of Biological Materials -- 2.2.2.1 Relaxation Theory -- 2.2.2.2 Age‐Dependent Dielectric Properties -- 2.2.3 The Interaction of EM Fields with Biological Materials -- 2.2.3.1 Interactions on the Body Scale -- 2.2.3.2 Interactions on the Tissue Scale -- 2.2.3.3 Interaction on the Cellular and Sub‐cellular Scales -- 2.3 Dosimetry Concepts -- 2.3.1 The Specific Absorption Rate (SAR) -- 2.3.1.1 SAR Measurement Techniques over the Frequency Spectrum -- 2.3.1.2 SAR Spatial Averaging.
2.3.1.3 Tissue Mass Averaging Procedures -- 2.3.1.4 Localized and Whole‐Body Averaged SAR -- 2.3.2 The Specific Absorption (SA) -- 2.4 Dosimetry Methodology -- 2.4.1 Experimental Dosimetry -- 2.4.2 Numerical Dosimetry -- 2.4.2.1 Theoretical Analysis -- 2.4.2.2 Numerical Modelling -- 2.5 Numerical Dosimetry at the Radiofrequency and Microwave Regions -- 2.5.1 Formulation of the Scattered‐Field FDTD Algorithm -- 2.5.2 Discretization of Anatomical Models in FDTD -- 2.5.3 Comparisons of Numerical Results with Analytical Benchmarks -- References -- Chapter 3 Numerical Exposure Assessments of Communication Systems at Higher Frequencies -- 3.1 Introduction -- 3.2 Exposure Configuration -- 3.3 Plane Wave Exposure Assessment of E‐field Absorption Within the Skin Using SAR as a Function of Frequency -- 3.3.1 Comparisons of SAR Levels on Dry‐Skin and Wet‐Skin -- 3.4 Plane Wave Exposure Assessment of E‐field Absorption Within Multi‐layer Model Using SAR as a Function of Frequency -- 3.4.1 Comparisons of SAR Levels on Dry‐Skin and Multi‐layer Model -- 3.5 Plane Wave Exposure Assessment of E‐field Absorption Within the Eye Using SAR as a Function of Frequency -- 3.5.1 Comparisons of SAR Levels on HEECM and Multi‐layer Model -- 3.6 Chapter Summary -- References -- Chapter 4 Age Dependent Exposure Estimation Using Numerical Methods -- 4.1 Introduction -- 4.2 Numerical Human Models -- 4.2.1 Adult Voxel Models -- 4.2.2 Child Voxel Model -- 4.3 Age‐Dependent Tissue Properties -- 4.3.1 Measured Tissue Properties -- 4.3.2 Age‐dependent Human Dielectric Properties Extraction from Measured Data -- 4.3.3 Novel Calculation Methods of Age‐dependent Dielectric Properties -- 4.3.3.1 Single Frequency Age‐Dependent Method -- 4.3.3.2 Dispersive Age‐Dependent Method -- 4.3.3.3 Implementation of the Cole-Cole Model on Age‐Dependent Properties. 4.3.3.4 Accuracy Among the Age‐dependent Methods -- 4.4 Numerical Validation -- 4.4.1 Comparison with an Analytical Benchmark -- 4.5 Chapter Summary -- References -- Chapter 5 Antenna Design Considerations for Low SAR Mobile Terminals -- 5.1 Introduction -- 5.2 SAR Reduction and Dual Coupling of Antenna -- 5.3 Coupling Manipulation Simulation Campaign -- 5.4 SAR Analysis and Surface Current -- 5.5 Resilience to Different Head Use Cases -- 5.6 Analysis of MIMO Performance in Data Mode -- 5.7 Conclusion -- References -- Chapter 6 MIMO Antennas with Coupling Manipulation for Low SAR Devices -- 6.1 Introduction -- 6.2 Working Principle and Antenna Geometry -- 6.2.1 Antenna Dimensions -- 6.2.2 Surface Current Distribution -- 6.2.3 Frequency Region Analysis -- 6.3 Antenna Measurements -- 6.3.1 MIMO Performance -- 6.4 Efficiency and SAR Analysis -- 6.5 Conclusion -- References -- Chapter 7 Reinforcement Learning and Device‐to‐Device Communication for Low EMF Exposure -- 7.1 Introduction -- 7.1.1 Contribution of Chapter -- 7.1.2 Chapter Organization -- 7.2 Background -- 7.2.1 Narrowband Internet of Things (NB‐IoT) -- 7.2.1.1 Frame Structure -- 7.2.2 Device‐to‐Device (D2D) Communication -- 7.2.3 Machine Learning -- 7.2.3.1 Reinforcement Learning -- 7.2.3.2 Q‐Learning -- 7.3 Related Works -- 7.4 System Model, Problem Formulation, and Proposed RL‐ID2D -- 7.4.1 Network Model -- 7.4.1.1 Channel Model -- 7.4.1.2 Mobility Model -- 7.4.1.3 Signal‐to‐Interference‐Noise‐Ratio (SINR) -- 7.4.2 Definitions -- 7.4.2.1 Packet Delivery Ratio -- 7.4.2.2 Potential Relay Set -- 7.4.2.3 End‐to‐End Delivery Ratio -- 7.4.3 Problem Formulation -- 7.4.4 Reinforcement Learning Enabled Relay Selection -- 7.4.4.1 Q‐Learning Framework -- 7.4.5 Proposed Intelligent D2D Mechanism -- 7.5 Performance Evaluation -- 7.5.1 Simulation Deployment Scenario and Analysis. 7.5.1.1 Analysis of Q‐Learning Behavior in NB‐IoT UE -- 7.5.1.2 Analysis of EDR Under Various Parameters -- 7.5.1.3 Analysis of E2E Delay Under Various Parameters -- 7.5.1.4 Comparative Analysis of RL‐ID2D with Opportunistic and Deterministic Model -- 7.6 Conclusion -- References -- Chapter 8 Unsupervised Learning Based Resource Allocation for Low EMF NOMA Systems -- 8.1 Introduction -- 8.1.1 Existing Work -- 8.1.2 Motivation and Contributions -- 8.1.3 Structure of the Chapter -- 8.2 EMF‐Aware PD‐NOMA Framework -- 8.2.1 System Model -- 8.2.2 Problem Formulation -- 8.3 Machine Learning Based User Grouping/Subcarrier Allocation -- 8.4 Power Assignment -- 8.5 Numerical Analysis -- 8.5.1 Simulation Results -- 8.5.2 Scheme Validity for Real Applications -- 8.6 Conclusion -- References -- Chapter 9 Emission‐Aware Resource Optimization for Backscatter‐Enabled NOMA Networks -- 9.1 Introduction -- 9.1.1 Motivation and Contributions -- 9.2 System Model -- 9.2.1 Problem Formulation -- 9.3 Proposed Solution -- 9.3.1 Sub‐carrier Allocation -- 9.3.2 Power Allocation -- 9.4 Performance Evaluation -- 9.5 Conclusion -- References -- Chapter 10 Road Ahead for Low EMF User Proximity Devices -- 10.1 Introduction -- 10.2 Perception and Physiological Impact of EMF -- 10.2.1 Public's Perception of Exposure and Risk Assessment -- 10.2.2 Physiological Impact -- 10.2.2.1 Age Range and Exposure -- 10.2.2.2 mmWave and Exposure -- 10.2.2.3 Brain Tumour and Exposure -- 10.3 EMF Exposure Evaluation Metric and Regulations: A Future Perspective -- 10.3.1 Expected Exposure Contribution of Future Wireless Communication Technologies -- 10.3.1.1 Exposure and mmWave -- 10.3.1.2 Exposure and Massive MIMO -- 10.3.1.3 Exposure and Densification -- 10.3.2 Open Issues and Future Research Tracks -- 10.3.2.1 New EMF Limits and Guidelines -- 10.3.2.2 EMF Mitigation Techniques and New Metrics. 10.3.2.3 Other Open Issues -- 10.4 Conclusion -- References -- Index -- EULA. |
Record Nr. | UNINA-9910830306703321 |
Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2023] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
LTE communications and networks : femtocells and antenna design challenges / / edited by Masood Ur Rehman, Ghazanfar Ali Safdar |
Autore | Rehman Masood |
Edizione | [First edition.] |
Pubbl/distr/stampa | Hoboken, New Jersey : , : John Wiley & Sons, , 2018 |
Descrizione fisica | 1 online resource (360 pgaes) |
Disciplina | 621.3845/6 |
Soggetto topico |
Long-Term Evolution (Telecommunications)
Femtocells Antennas (Electronics) - Design and construction |
ISBN |
1-119-38525-3
1-119-38524-5 1-119-38527-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
List of Contributors xv -- Preface xvi -- 1 Introduction 1 /Ghazanfar Ali Safdar and Masood Ur Rehman -- 1.1 Evolution of Wireless and Cellular Communication 2 -- 1.1.1 1 G 3 -- 1.1.2 2 G 3 -- 1.1.3 2.5 G 3 -- 1.1.4 2.75 G 4 -- 1.1.5 3 G 4 -- 1.1.6 3.5 G 4 -- 1.1.7 4 G/LTE 5 -- 1.2 LTE Architecture 5 -- 1.2.1 Communications Perspective Challenges in LTE Networks 8 -- 1.2.1.1 Signalling System 8 -- 1.2.1.2 Backward Compatibility 9 -- 1.2.1.3 BS Efficiency 9 -- 1.2.2 LTE Radio Frame 10 -- 1.3 LTE Antennas 11 -- 1.4 LTE Applications 11 -- 1.4.1 Communications 11 -- 1.4.2 Public Safety 12 -- 1.4.3 Device?]to?]Device Communications 12 -- 1.4.4 Video Streaming 12 -- 1.4.5 Voice over LTE (VoLTE) 12 -- 1.4.6 Internet of Things 13 -- 1.4.7 Wearable Systems 13 -- 1.4.8 Cloud Computing 13 -- 1.5 Book Organization 14 -- References 16 -- Part I LTE Femtocells 19 -- 2 LTE Femtocells 21 /Ghazanfar Ali Safdar -- 2.1 Introduction 21 -- 2.1.1 Cross?]Tier Interference 22 -- 2.1.2 Co?]Tier Interference 24 -- 2.1.3 Downlink Interference Modelling 24 -- 2.1.4 Uplink Interference Modelling 25 -- 2.2 Platform for Femtocell Deployment 26 -- 2.3 LTE Architecture Overview 26 -- 2.3.1 LTE Downlink Transmission 27 -- 2.3.2 LTE Uplink Transmission 27 -- 2.4 LTE Femtocell Interference Analysis 28 -- 2.4.1 Scenario 1: Cross?]Tier Interference Analysis 28 -- 2.4.2 Scenario 2: Effects of Femtocell Access Mode Deployment 28 -- 2.4.3 Scenario 3: Co?]Tier Interference Analysis 29 -- 2.4.4 Scenario 4: Effects of Varying FAP Transmit Power Levels on MUEs 29 -- 2.5 Interference Mitigation: Current State of the Art 31 -- 2.5.1 Spectrum Access/Frequency Assignment 31 -- 2.5.2 Power Control 32 -- 2.5.3 Antenna Schemes 33 -- 2.6 Cognitive Femtocells: A Smart Solution to a Complex Problem 33 -- 2.7 Summary 35 -- References 36 -- 3 Interference Mitigation in Cognitive Radio?]Based LTE Femtocells 38 /Ghazanfar Ali Safdar -- 3.1 Introduction 39 -- 3.2 Femtocells 41 -- 3.2.1 Femtocells - Interference versus Deployment 43.
3.2.2 Femtocells - Typical Interference Mitigation Techniques 46 -- 3.2.2.1 Spectrum Access/Frequency Assignment Schemes 46 -- 3.2.2.2 Power Control (PC) Schemes 46 -- 3.2.2.3 Antenna Schemes 48 -- 3.3 Interference Mitigation in Femtocells using Cognitive Radio 49 -- 3.3.1 Cognitive Interference Mitigation 51 -- 3.3.1.1 Cognitive Interference Mitigation - PC 52 -- 3.3.1.2 Cognitive Interference Mitigation - Spectrum Access 54 -- 3.3.1.3 Cognitive Interference Mitigation - Antenna Schemes 64 -- 3.3.1.4 Cognitive Interference Mitigation - Joint Schemes 66 -- 3.3.2 Cognitive Interference Mitigation versus Conventional Interference Mitigation 70 -- 3.4 Summary 74 -- References 75 -- 4 Coverage Area?]Based Power Control for Interference Management in LTE Femtocells 84 /Ghazanfar Ali Safdar -- 4.1 Introduction 85 -- 4.2 Coverage Radius Based Power Control Scheme (PS) 88 -- 4.2.1 Radius Limit Setting 89 -- 4.2.2 Initial Coverage Radius 89 -- 4.2.3 Self?]Update 89 -- 4.2.4 Final Radius 89 -- 4.3 System Model 90 -- 4.4 Performance Analysis 92 -- 4.4.1 Results and Discussion 93 -- 4.4.1.1 SINR Cross?]Tier (Single Cell) 93 -- 4.4.1.2 SINR Co?]Tier (Single Cell) 94 -- 4.4.1.3 Downlink Throughput (Single Cell) 95 -- 4.4.1.4 Co?] and Cross?]Tier SINR (Single Cell versus Multicell) 96 -- 4.4.1.5 Droppage in SINR (Single Cell versus Multicell) 97 -- 4.4.1.6 Coverage Area Bounds and Impact on SINR (Single Cell versus Multicell) 99 -- 4.5 Summary 100 -- References 101 -- 5 Energy Management in LTE Femtocells 104 /Kapil Kanwal, Ghazanfar Ali Safdar, Masood Ur Rehman and Xiaodong Yang -- 5.1 Introduction 105 -- 5.2 Architecture of LTE Networks 105 -- 5.2.1 Communications Perspective Challenges in LTE Networks 106 -- 5.2.1.1 Signalling System 106 -- 5.2.1.2 Backward Compatibility 107 -- 5.2.1.3 BS Efficiency 107 -- 5.2.2 Importance of Energy Management in LTE Networks 108 -- 5.3 Classification of ES Schemes 108 -- 5.3.1 Static Power Consumption 109 -- 5.3.2 Dynamic Power Consumption 109. 5.4 Energy Efficient Resource Allocation 113 -- 5.4.1 Hybrid FBS and MBS Based Schemes 113 -- 5.4.2 Link Adaptation Schemes 114 -- 5.4.3 Cross Layer Resource Allocation Schemes 115 -- 5.4.4 MBSFN Resource Allocation Scheme 115 -- 5.5 Bandwidth Expansion Schemes 117 -- 5.5.1 CoMP Based Coverage Expansion 117 -- 5.5.2 Time Compression (TCoM) Scheme 118 -- 5.5.3 Bandwidth Expansion Mode (BEM) Scheme 119 -- 5.5.4 Component Carrier Based Schemes 121 -- 5.5.5 Scheduling Based Schemes 122 -- 5.6 Load Balancing Schemes 123 -- 5.6.1 Distance Aware Schemes 123 -- 5.6.2 Coverage Expansion Based Schemes 125 -- 5.6.3 Distributed Schemes 125 -- 5.6.4 Shared Relay Based Schemes 127 -- 5.6.5 CRN Adopted Switching Off of a BS 128 -- 5.6.6 Reduced Early Handover (REHO) Scheme 129 -- 5.7 Comparative Analysis 130 -- 5.8 Open Research Issues 135 -- 5.9 Summary 139 -- References 140 -- 6 Spectrum Sensing Mechanisms in Cognitive Radio Based LTE Femtocells 150 /Tazeen S. Syed and Ghazanfar Ali Safdar -- 6.1 Fundamentals of Signal Processing 151 -- 6.1.1 Channel Model 151 -- 6.1.1.1 Additive Gaussian Noise Channel 151 -- 6.1.1.2 Linear Filter Channel 152 -- 6.1.1.3 Band Limited Channel 153 -- 6.1.2 Modulation Technique 153 -- 6.1.3 Error Probability 154 -- 6.2 Spectrum Sensing Techniques 155 -- 6.2.1 Primary Transmitter Detection 155 -- 6.2.1.1 Energy Detector 156 -- 6.2.1.2 Matched Filter Detection 158 -- 6.2.1.3 Cyclostationary Feature Detection 159 -- 6.2.1.4 Waveform Detection 160 -- 6.2.1.5 Wavelet Detection 161 -- 6.2.1.6 Hybrid Sensing 162 -- 6.2.1.7 Multi?]Taper Spectrum Sensing 163 -- 6.2.2 Collaborative/Cooperative Detection 163 -- 6.2.3 Interference Temperature Detection 166 -- 6.2.4 Primary Receiver Detection 166 -- 6.3 History Assisted Spectrum Sensing 166 -- 6.4 Model?]and Statistics?]Based Spectrum Sensing Classification 167 -- 6.5 Challenges and Issues 172 -- 6.6 Summary 176 -- References 177 -- Part II Antennas for LTE Femtocells 185 -- 7 Antenna Consideration for LTE Femtocells 187 /Masood Ur Rehman. 7.1 Antenna Fundamentals 187 -- 7.1.1 Input Impedance and Matching 188 -- 7.1.2 Bandwidth 189 -- 7.1.3 Radiation Pattern 190 -- 7.1.4 Directivity and Gain 191 -- 7.1.5 Efficiency 193 -- 7.1.6 Polarization 193 -- 7.2 Antenna Requirements for LTE Femtocells 196 -- 7.2.1 Frequency Bands 197 -- 7.2.2 Form Factor and Size Limitation 201 -- 7.2.3 Impedance Matching, Directivity, Gain and Efficiency 201 -- 7.2.4 Directionality 202 -- 7.2.5 Polarization 203 -- 7.2.6 Human Body Effects and Specific Absorption Rate (SAR) 204 -- 7.2.7 Multiple Input Multiple Output (MIMO) 205 -- References 206 -- 8 Multiband Antennas for LTE Femtocells 209 /Masood Ur Rehman and Xiaodong Yang -- 8.1 Fundamentals of Multiband Antennas 209 -- 8.1.1 Multiband Techniques 210 -- 8.1.1.1 Higher Order Resonances 210 -- 8.1.1.2 Multiple Resonant Structures 211 -- 8.2 Types of Multiband Antennas 211 -- 8.3 Multiband Antenna Design: Case Studies 214 -- 8.3.1 Multi?]Slot Antenna 215 -- 8.3.1.1 Antenna Geometry 215 -- 8.3.1.2 Antenna Performance Evaluation 215 -- 8.3.2 Patch?]Loop Combination Antenna 220 -- 8.3.2.1 Antenna Configuration 220 -- 8.3.2.2 Antenna Performance 220 -- 8.4 Open Research Issues 227 -- References 227 -- 9 Reconfigurable Antennas for LTE Femtocells 230 /Masood Ur Rehman and Waqas Farooq -- 9.1 Fundamentals of Reconfigurable Antennas 230 -- 9.1.1 Types of Reconfigurable Antennas 231 -- 9.1.1.1 Use of Switches 232 -- 9.1.1.2 Structural and Mechanical Changes 232 -- 9.1.1.3 Material Changes 234 -- 9.2 Realization of Reconfigurable Antennas 234 -- 9.3 Rectangular Patch Reconfigurable LTE Femtocell Antenna 237 -- 9.3.1 Design Conception 237 -- 9.3.2 Frequency Reconfiguration Mode 239 -- 9.3.3 Antenna Performance Evaluation 240 -- 9.4 Circular Patch Reconfigurable LTE Femtocell Antenna 246 -- 9.4.1 Frequency Reconfiguration Mode 248 -- 9.4.2 Antenna Performance Evaluation 248 -- 9.5 Open Research Issues 253 -- References 254 -- 10 Multimode Antennas for LTE Femtocells 259 /Oluyemi Peter Falade, Xiaodong Chen and Masood Ur Rehman. 10.1 Multimode Antennas: Fundamentals and Types 260 -- 10.2 Design of a Compact Multimode LTE Femtocell Antenna for Handheld Devices 261 -- 10.2.1 Numerical Analysis 263 -- 10.2.2 Experimental Investigation 266 -- 10.3 Design of a Multifunctional Compact Antenna for LTE Femtocells and GNSS Systems 268 -- 10.3.1 Numerical Analysis 273 -- 10.3.2 Experimental Investigation 279 -- 10.4 Summary 284 -- 10.5 Open Challenges and Issues 284 -- References 284 -- 11 Human Body Effects on LTE Femtocell Antennas 289 /Masood Ur Rehman and Qammer Hussain Abbasi -- 11.1 Interaction of the Human Body with Antennas 290 -- 11.2 Numerical Modelling of the Human Body 291 -- 11.2.1 Evaluation and Comparison of Numerical Models of Human Body 294 -- 11.2.1.1 On?]Body Transmission 294 -- 11.2.1.2 Effects on Antenna Radiation Pattern 297 -- 11.2.1.3 Electric Field Distribution 299 -- 11.2.1.4 Specific Absorption Rate (SAR) 300 -- 11.3 Evaluation of Human Body Effects on LTE Femtocell Antennas 305 -- 11.3.1 On?]Body Antenna Placement 308 -- 11.3.2 Antenna?]Body Separation 310 -- 11.3.3 On?]Body LTE Channel Characterization 312 -- 11.3.4 On?]Off Body LTE Channel Characterization 313 -- 11.3.5 Body?]to?]Body LTE Channel Characterization 315 -- 11.4 Open Research Issues 316 -- References 317 -- 12 The Road Ahead for LTE Femtocells 322 /Masood Ur Rehman and Ghazanfar Ali Safdar -- 12.1 Future Prospects and Challenges 323 -- 12.1.1 Spectrum Sharing 324 -- 12.1.2 Intelligent/Efficient Spectrum Sensing Schemes 324 -- 12.1.3 Primary/Secondary User Issue 325 -- 12.1.4 Energy Saving 325 -- 12.1.5 Security 326 -- 12.1.6 Pilot Power/Coverage Radius Issue 326 -- 12.1.7 Signalling Overhead 326 -- 12.1.8 Proximity Services 326 -- 12.1.9 The Internet?]of?]Things (IoT) 327 -- 12.1.10 The Age of Big Data 328 -- 12.1.11 5G and Femtocells 328 -- 12.1.12 Antenna Design and Channel Modelling 328 -- References 330 -- Index 332 --. |
Record Nr. | UNINA-9910270907203321 |
Rehman Masood | ||
Hoboken, New Jersey : , : John Wiley & Sons, , 2018 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
LTE communications and networks : femtocells and antenna design challenges / / edited by Masood Ur Rehman, Ghazanfar Ali Safdar |
Autore | Rehman Masood |
Edizione | [First edition.] |
Pubbl/distr/stampa | Hoboken, New Jersey : , : John Wiley & Sons, , 2018 |
Descrizione fisica | 1 online resource (360 pgaes) |
Disciplina | 621.3845/6 |
Soggetto topico |
Long-Term Evolution (Telecommunications)
Femtocells Antennas (Electronics) - Design and construction |
ISBN |
1-119-38525-3
1-119-38524-5 1-119-38527-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
List of Contributors xv -- Preface xvi -- 1 Introduction 1 /Ghazanfar Ali Safdar and Masood Ur Rehman -- 1.1 Evolution of Wireless and Cellular Communication 2 -- 1.1.1 1 G 3 -- 1.1.2 2 G 3 -- 1.1.3 2.5 G 3 -- 1.1.4 2.75 G 4 -- 1.1.5 3 G 4 -- 1.1.6 3.5 G 4 -- 1.1.7 4 G/LTE 5 -- 1.2 LTE Architecture 5 -- 1.2.1 Communications Perspective Challenges in LTE Networks 8 -- 1.2.1.1 Signalling System 8 -- 1.2.1.2 Backward Compatibility 9 -- 1.2.1.3 BS Efficiency 9 -- 1.2.2 LTE Radio Frame 10 -- 1.3 LTE Antennas 11 -- 1.4 LTE Applications 11 -- 1.4.1 Communications 11 -- 1.4.2 Public Safety 12 -- 1.4.3 Device?]to?]Device Communications 12 -- 1.4.4 Video Streaming 12 -- 1.4.5 Voice over LTE (VoLTE) 12 -- 1.4.6 Internet of Things 13 -- 1.4.7 Wearable Systems 13 -- 1.4.8 Cloud Computing 13 -- 1.5 Book Organization 14 -- References 16 -- Part I LTE Femtocells 19 -- 2 LTE Femtocells 21 /Ghazanfar Ali Safdar -- 2.1 Introduction 21 -- 2.1.1 Cross?]Tier Interference 22 -- 2.1.2 Co?]Tier Interference 24 -- 2.1.3 Downlink Interference Modelling 24 -- 2.1.4 Uplink Interference Modelling 25 -- 2.2 Platform for Femtocell Deployment 26 -- 2.3 LTE Architecture Overview 26 -- 2.3.1 LTE Downlink Transmission 27 -- 2.3.2 LTE Uplink Transmission 27 -- 2.4 LTE Femtocell Interference Analysis 28 -- 2.4.1 Scenario 1: Cross?]Tier Interference Analysis 28 -- 2.4.2 Scenario 2: Effects of Femtocell Access Mode Deployment 28 -- 2.4.3 Scenario 3: Co?]Tier Interference Analysis 29 -- 2.4.4 Scenario 4: Effects of Varying FAP Transmit Power Levels on MUEs 29 -- 2.5 Interference Mitigation: Current State of the Art 31 -- 2.5.1 Spectrum Access/Frequency Assignment 31 -- 2.5.2 Power Control 32 -- 2.5.3 Antenna Schemes 33 -- 2.6 Cognitive Femtocells: A Smart Solution to a Complex Problem 33 -- 2.7 Summary 35 -- References 36 -- 3 Interference Mitigation in Cognitive Radio?]Based LTE Femtocells 38 /Ghazanfar Ali Safdar -- 3.1 Introduction 39 -- 3.2 Femtocells 41 -- 3.2.1 Femtocells - Interference versus Deployment 43.
3.2.2 Femtocells - Typical Interference Mitigation Techniques 46 -- 3.2.2.1 Spectrum Access/Frequency Assignment Schemes 46 -- 3.2.2.2 Power Control (PC) Schemes 46 -- 3.2.2.3 Antenna Schemes 48 -- 3.3 Interference Mitigation in Femtocells using Cognitive Radio 49 -- 3.3.1 Cognitive Interference Mitigation 51 -- 3.3.1.1 Cognitive Interference Mitigation - PC 52 -- 3.3.1.2 Cognitive Interference Mitigation - Spectrum Access 54 -- 3.3.1.3 Cognitive Interference Mitigation - Antenna Schemes 64 -- 3.3.1.4 Cognitive Interference Mitigation - Joint Schemes 66 -- 3.3.2 Cognitive Interference Mitigation versus Conventional Interference Mitigation 70 -- 3.4 Summary 74 -- References 75 -- 4 Coverage Area?]Based Power Control for Interference Management in LTE Femtocells 84 /Ghazanfar Ali Safdar -- 4.1 Introduction 85 -- 4.2 Coverage Radius Based Power Control Scheme (PS) 88 -- 4.2.1 Radius Limit Setting 89 -- 4.2.2 Initial Coverage Radius 89 -- 4.2.3 Self?]Update 89 -- 4.2.4 Final Radius 89 -- 4.3 System Model 90 -- 4.4 Performance Analysis 92 -- 4.4.1 Results and Discussion 93 -- 4.4.1.1 SINR Cross?]Tier (Single Cell) 93 -- 4.4.1.2 SINR Co?]Tier (Single Cell) 94 -- 4.4.1.3 Downlink Throughput (Single Cell) 95 -- 4.4.1.4 Co?] and Cross?]Tier SINR (Single Cell versus Multicell) 96 -- 4.4.1.5 Droppage in SINR (Single Cell versus Multicell) 97 -- 4.4.1.6 Coverage Area Bounds and Impact on SINR (Single Cell versus Multicell) 99 -- 4.5 Summary 100 -- References 101 -- 5 Energy Management in LTE Femtocells 104 /Kapil Kanwal, Ghazanfar Ali Safdar, Masood Ur Rehman and Xiaodong Yang -- 5.1 Introduction 105 -- 5.2 Architecture of LTE Networks 105 -- 5.2.1 Communications Perspective Challenges in LTE Networks 106 -- 5.2.1.1 Signalling System 106 -- 5.2.1.2 Backward Compatibility 107 -- 5.2.1.3 BS Efficiency 107 -- 5.2.2 Importance of Energy Management in LTE Networks 108 -- 5.3 Classification of ES Schemes 108 -- 5.3.1 Static Power Consumption 109 -- 5.3.2 Dynamic Power Consumption 109. 5.4 Energy Efficient Resource Allocation 113 -- 5.4.1 Hybrid FBS and MBS Based Schemes 113 -- 5.4.2 Link Adaptation Schemes 114 -- 5.4.3 Cross Layer Resource Allocation Schemes 115 -- 5.4.4 MBSFN Resource Allocation Scheme 115 -- 5.5 Bandwidth Expansion Schemes 117 -- 5.5.1 CoMP Based Coverage Expansion 117 -- 5.5.2 Time Compression (TCoM) Scheme 118 -- 5.5.3 Bandwidth Expansion Mode (BEM) Scheme 119 -- 5.5.4 Component Carrier Based Schemes 121 -- 5.5.5 Scheduling Based Schemes 122 -- 5.6 Load Balancing Schemes 123 -- 5.6.1 Distance Aware Schemes 123 -- 5.6.2 Coverage Expansion Based Schemes 125 -- 5.6.3 Distributed Schemes 125 -- 5.6.4 Shared Relay Based Schemes 127 -- 5.6.5 CRN Adopted Switching Off of a BS 128 -- 5.6.6 Reduced Early Handover (REHO) Scheme 129 -- 5.7 Comparative Analysis 130 -- 5.8 Open Research Issues 135 -- 5.9 Summary 139 -- References 140 -- 6 Spectrum Sensing Mechanisms in Cognitive Radio Based LTE Femtocells 150 /Tazeen S. Syed and Ghazanfar Ali Safdar -- 6.1 Fundamentals of Signal Processing 151 -- 6.1.1 Channel Model 151 -- 6.1.1.1 Additive Gaussian Noise Channel 151 -- 6.1.1.2 Linear Filter Channel 152 -- 6.1.1.3 Band Limited Channel 153 -- 6.1.2 Modulation Technique 153 -- 6.1.3 Error Probability 154 -- 6.2 Spectrum Sensing Techniques 155 -- 6.2.1 Primary Transmitter Detection 155 -- 6.2.1.1 Energy Detector 156 -- 6.2.1.2 Matched Filter Detection 158 -- 6.2.1.3 Cyclostationary Feature Detection 159 -- 6.2.1.4 Waveform Detection 160 -- 6.2.1.5 Wavelet Detection 161 -- 6.2.1.6 Hybrid Sensing 162 -- 6.2.1.7 Multi?]Taper Spectrum Sensing 163 -- 6.2.2 Collaborative/Cooperative Detection 163 -- 6.2.3 Interference Temperature Detection 166 -- 6.2.4 Primary Receiver Detection 166 -- 6.3 History Assisted Spectrum Sensing 166 -- 6.4 Model?]and Statistics?]Based Spectrum Sensing Classification 167 -- 6.5 Challenges and Issues 172 -- 6.6 Summary 176 -- References 177 -- Part II Antennas for LTE Femtocells 185 -- 7 Antenna Consideration for LTE Femtocells 187 /Masood Ur Rehman. 7.1 Antenna Fundamentals 187 -- 7.1.1 Input Impedance and Matching 188 -- 7.1.2 Bandwidth 189 -- 7.1.3 Radiation Pattern 190 -- 7.1.4 Directivity and Gain 191 -- 7.1.5 Efficiency 193 -- 7.1.6 Polarization 193 -- 7.2 Antenna Requirements for LTE Femtocells 196 -- 7.2.1 Frequency Bands 197 -- 7.2.2 Form Factor and Size Limitation 201 -- 7.2.3 Impedance Matching, Directivity, Gain and Efficiency 201 -- 7.2.4 Directionality 202 -- 7.2.5 Polarization 203 -- 7.2.6 Human Body Effects and Specific Absorption Rate (SAR) 204 -- 7.2.7 Multiple Input Multiple Output (MIMO) 205 -- References 206 -- 8 Multiband Antennas for LTE Femtocells 209 /Masood Ur Rehman and Xiaodong Yang -- 8.1 Fundamentals of Multiband Antennas 209 -- 8.1.1 Multiband Techniques 210 -- 8.1.1.1 Higher Order Resonances 210 -- 8.1.1.2 Multiple Resonant Structures 211 -- 8.2 Types of Multiband Antennas 211 -- 8.3 Multiband Antenna Design: Case Studies 214 -- 8.3.1 Multi?]Slot Antenna 215 -- 8.3.1.1 Antenna Geometry 215 -- 8.3.1.2 Antenna Performance Evaluation 215 -- 8.3.2 Patch?]Loop Combination Antenna 220 -- 8.3.2.1 Antenna Configuration 220 -- 8.3.2.2 Antenna Performance 220 -- 8.4 Open Research Issues 227 -- References 227 -- 9 Reconfigurable Antennas for LTE Femtocells 230 /Masood Ur Rehman and Waqas Farooq -- 9.1 Fundamentals of Reconfigurable Antennas 230 -- 9.1.1 Types of Reconfigurable Antennas 231 -- 9.1.1.1 Use of Switches 232 -- 9.1.1.2 Structural and Mechanical Changes 232 -- 9.1.1.3 Material Changes 234 -- 9.2 Realization of Reconfigurable Antennas 234 -- 9.3 Rectangular Patch Reconfigurable LTE Femtocell Antenna 237 -- 9.3.1 Design Conception 237 -- 9.3.2 Frequency Reconfiguration Mode 239 -- 9.3.3 Antenna Performance Evaluation 240 -- 9.4 Circular Patch Reconfigurable LTE Femtocell Antenna 246 -- 9.4.1 Frequency Reconfiguration Mode 248 -- 9.4.2 Antenna Performance Evaluation 248 -- 9.5 Open Research Issues 253 -- References 254 -- 10 Multimode Antennas for LTE Femtocells 259 /Oluyemi Peter Falade, Xiaodong Chen and Masood Ur Rehman. 10.1 Multimode Antennas: Fundamentals and Types 260 -- 10.2 Design of a Compact Multimode LTE Femtocell Antenna for Handheld Devices 261 -- 10.2.1 Numerical Analysis 263 -- 10.2.2 Experimental Investigation 266 -- 10.3 Design of a Multifunctional Compact Antenna for LTE Femtocells and GNSS Systems 268 -- 10.3.1 Numerical Analysis 273 -- 10.3.2 Experimental Investigation 279 -- 10.4 Summary 284 -- 10.5 Open Challenges and Issues 284 -- References 284 -- 11 Human Body Effects on LTE Femtocell Antennas 289 /Masood Ur Rehman and Qammer Hussain Abbasi -- 11.1 Interaction of the Human Body with Antennas 290 -- 11.2 Numerical Modelling of the Human Body 291 -- 11.2.1 Evaluation and Comparison of Numerical Models of Human Body 294 -- 11.2.1.1 On?]Body Transmission 294 -- 11.2.1.2 Effects on Antenna Radiation Pattern 297 -- 11.2.1.3 Electric Field Distribution 299 -- 11.2.1.4 Specific Absorption Rate (SAR) 300 -- 11.3 Evaluation of Human Body Effects on LTE Femtocell Antennas 305 -- 11.3.1 On?]Body Antenna Placement 308 -- 11.3.2 Antenna?]Body Separation 310 -- 11.3.3 On?]Body LTE Channel Characterization 312 -- 11.3.4 On?]Off Body LTE Channel Characterization 313 -- 11.3.5 Body?]to?]Body LTE Channel Characterization 315 -- 11.4 Open Research Issues 316 -- References 317 -- 12 The Road Ahead for LTE Femtocells 322 /Masood Ur Rehman and Ghazanfar Ali Safdar -- 12.1 Future Prospects and Challenges 323 -- 12.1.1 Spectrum Sharing 324 -- 12.1.2 Intelligent/Efficient Spectrum Sensing Schemes 324 -- 12.1.3 Primary/Secondary User Issue 325 -- 12.1.4 Energy Saving 325 -- 12.1.5 Security 326 -- 12.1.6 Pilot Power/Coverage Radius Issue 326 -- 12.1.7 Signalling Overhead 326 -- 12.1.8 Proximity Services 326 -- 12.1.9 The Internet?]of?]Things (IoT) 327 -- 12.1.10 The Age of Big Data 328 -- 12.1.11 5G and Femtocells 328 -- 12.1.12 Antenna Design and Channel Modelling 328 -- References 330 -- Index 332 --. |
Record Nr. | UNINA-9910808827703321 |
Rehman Masood | ||
Hoboken, New Jersey : , : John Wiley & Sons, , 2018 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|