top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Low dimensional semiconductor structures : characterization, modeling and applications / / Hilmi Unlu, Norman J.M. Horing (editors)
Low dimensional semiconductor structures : characterization, modeling and applications / / Hilmi Unlu, Norman J.M. Horing (editors)
Edizione [1st ed. 2013.]
Pubbl/distr/stampa New York, : Springer, 2013
Descrizione fisica 1 online resource (173 p.)
Disciplina 537.6223
Altri autori (Persone) UnluH (Hilmi)
HoringNorman J. M
Collana Nanoscience and technology
Soggetto topico Low-dimensional semiconductors
ISBN 1-283-61301-8
9786613925466
3-642-28424-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Advances in Low Dimensional Semiconductor Structures -- Modeling of Low Dimensional Semiconductors -- Graphene: Properties and Theory.-  Functionalization of Graphene Nanoribbons -- Atom/Molecule Van Der Waals Interaction with Graphene -- Optical Studies of Semiconductor Quantum Dots -- Friedel Sum Rule in One- And Quasi-One-Dimensional Wires -- Effects of Temperature on The Scattering Phases and Density of States in Quantum Wires.
Record Nr. UNINA-9910438105403321
New York, : Springer, 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Progress in nanoscale and low-dimensional materials and devices : properties, synthesis, characterization, modelling and applications / / Hilmi Ünlü, Norman J. M. Horing, editors
Progress in nanoscale and low-dimensional materials and devices : properties, synthesis, characterization, modelling and applications / / Hilmi Ünlü, Norman J. M. Horing, editors
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (939 pages)
Disciplina 620.115
Collana Topics in applied physics
Soggetto topico Nanostructured materials - Industrial applications
Low-dimensional semiconductors
Nanotechnology
ISBN 3-030-93460-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- Contributors -- 1 Modelling of Semiconductors for Low Dimensional Heterostructure Devices -- 1.1 Introduction -- 1.2 Strain in Low Dimensional Heterostructures -- 1.3 Composition Effects in Ternary/Binary Heterostructures -- 1.4 Electronic Band Structure Modelling -- 1.5 Semiempirical Tight Binding Modelling -- 1.5.1 Semiempirical sp3 Tight Binding Theory -- 1.5.2 Semiempirical sp3s* Tight Binding Theory -- 1.5.3 Semiempirical sp3d5 Tight Binding Theory -- 1.5.4 Semiempirical sp3d5s* Tight Binding Theory -- 1.6 Density Functional Theory Modelling -- 1.7 Tight Binding and DFT-MBJLDA Modelling of Band Offsets -- 1.8 Pressure Effects on Structure and Electronic Properties -- 1.8.1 Structural Parameters -- 1.8.2 Electronic Properties -- 1.9 Finite Difference Method for Low Dimensional Structures -- 1.9.1 Application of Finite Difference Method to Quantum Wells -- 1.9.2 Application of Finite Difference Method to Quantum Wires -- 1.9.3 Finite Difference Method Applied to Quantum Dots -- 1.10 Conclusion -- References -- 2 Strain in Microscale and Nanoscale Semiconductor Heterostructures -- 2.1 Introduction -- 2.2 Strain in Planar and Core/Shell Heterostructures -- 2.3 Strain in Microscale Planar Heterostructures -- 2.4 Strain in Spherical Core/Shell Heterostructures -- 2.5 Strain in Cylindrical Core/Shell Heterostructures -- 2.6 Interface Strain and Morphology in Core/Shell QDs -- 2.7 Bandgaps and Band Offsts in Core/Shell Heterostructures -- 2.8 Strain Effects on Bandgaps and Band Offsets -- 2.9 Comparison of Measured and Predicted Core Bandgaps -- 2.9.1 Comparison of Predicted and Extracted Band Offsets -- 2.9.2 Conclusions and Suggestions -- References -- 3 Synthesis, Characterization and Modelling of Colloidal Quantum Dots -- 3.1 Introduction -- 3.2 Synthesis of CdSe Core and CdSe/ZnS Core/Shell QDs.
3.2.1 Synthesis of CdSe Core QDs -- 3.2.2 Growth of ZnS Shells on CdSe Core -- 3.3 HRTEM Characterization -- 3.4 XRD Characterization -- 3.5 Optical Absorption and Emission Characteristics -- 3.5.1 UV-Vis Characterization -- 3.5.2 Fluorescence Characterization -- 3.5.3 UV-Vis, PL and Stokes Shift -- 3.6 Dielectric Spectroscopy Characterization -- 3.7 Precursor Ratio Effect on Nanoparticle Growth -- 3.8 Emission Quality and PL Yield -- 3.9 Stability of CdSe Quantum Dots -- 3.10 Strain Effects on Size and Core Bandgap -- 3.11 Conclusion -- References -- 4 Synthesis of Transition Metal Dichalcogenides (TMDs) -- 4.1 Introduction -- 4.2 Mechanical Exfoliation -- 4.2.1 Scotch-Tape Method -- 4.2.2 Metal-Assisted Method -- 4.2.3 Layer-Resolved Splitting (LRS) Method -- 4.3 Liquid-Phase Exfoliation -- 4.3.1 Organic Solvent-Based Exfoliation Method -- 4.3.2 Ion Intercalation Method -- 4.4 Chemical Vapor Deposition (CVD) -- 4.4.1 Thermal Chemical Vapor Deposition -- 4.4.2 Metal-Organic Chemical Vapor Deposition (MOCVD) -- 4.4.3 Chemical Vapor Transport (CVT) Method -- 4.5 Molecular Beam Epitaxy (MBE) -- 4.6 Doping/Alloy of Transition Metal Dichalcogenides -- 4.6.1 Substitution of Cation Elements in TMDs -- 4.6.2 Substitution of Anion Elements in TMDs -- 4.7 Summary -- References -- 5 II-VI Semiconductor Quantum Dots: The Evolution of Color Purity with Structure -- 5.1 Introduction to II-VI Semiconductor Quantum Dots in Glass and Quantum Size Effect -- 5.2 Quantum Size Effect -- 5.3 Synthesis of Quantum Dots in Aqueous Solution -- 5.3.1 Aqueous Synthesis of CdTe Quantum Dots -- 5.4 Investigation of Optical and Structural Properties of CdTe Thin Films -- 5.4.1 Experimental Details -- 5.4.2 Effect of Grain Size and Strain on Bandgap Energy -- 5.4.3 Urbach Energy -- 5.4.4 XRD Spectra -- 5.4.5 Williamson-Hall Analysis of X-Ray Diffraction -- 5.4.6 Raman Spectra.
5.4.7 Conclusion -- 5.5 Difficulties in the Thin Film Growth of ZnO and Defect Structure -- 5.6 Colorimetric Evaluation of Group II-VI Quantum Dots in Glass Matrix -- 5.6.1 Materials and Methods -- 5.6.2 Results and Discussions -- References -- 6 Recent Progress in Magnetic Nanostructures Studied by Synchrotron Radiation -- 6.1 Introduction -- 6.2 XMCD and XAFS Study for Thin Film -- 6.2.1 Methodology -- 6.2.2 XMCD and XAFS for Cluster-Layered Fe/Cr Films -- 6.2.3 Other Applications -- 6.3 Mössbauer Spectroscopy for Thin Films Using Synchrotron Radiation -- 6.3.1 Mössbauer Spectroscopy for Thin Films -- 6.3.2 Synchrotron Mössbauer Source -- 6.3.3 Mössbauer Spectroscopy with Monoatomic Layer Spatial Resolution -- 6.3.4 Other Applications -- References -- 7 Quantum Dynamics and Statistical Thermodynamics of Nanostructured Dirac-Like Materials in a Magnetic Field -- 7.1 Introduction -- 7.2 Dirac "Relativistic" Materials -- 7.3 Calculations A: Graphene and Dichalcogenides -- 7.4 Calculations B -- 7.5 Diced Lattice Calculations -- 7.6 Work in Progress and Planned -- 7.7 Hamiltonian: H proptop -- π = p + eA c -- 7.8 Green's Function Equa. and Magnetic Field Gauge -- 7.9 Retarded Green's Function Equation -- 7.10 Diagonal Green's Function Analysis -- 7.11 Conservation of Angular Momentum -- 7.12 Diagonal Green's Function Solution -- 7.13 Dichalcogenide Energy Spectrum -- 7.14 Off-Diagonal Elements -- 7.15 Other Representations (Notation: ρ=sqrtg2+ε2npm ) -- 7.16 Thermodynamic Green's Function and Spectral Weight Matrix A -- 7.17 Spectral Weight Matrix (Matrix Elements of A rightarrow Aij) -- 7.18 Model Function Dot Green's fn. Gdot-Graphene -- 7.19 Landau Quantized Energy Spectrum: Graphene-Dot -- 7.20 Model Q-Wire Green's Function GW-Dichalcogenide -- 7.21 Q-Wire Green's Fn. Elements (Gr review) -- 7.22 Model Q-Wire Eigenenergy Dispersion Relation.
7.23 Landau Quantized Dichalcogenide Q-Wire Energy Spectrum -- 7.24 Model Q-Anti-dot Lattice Dichalcogenide Landau Minibands -- 7.25 Lattice GL-Fn. In Magnetic Field: Analysis -- 7.26 Solution for Lattice GL-Function -- 7.27 Q-Anti-dot Lattice Energy Spectrum: Landau Minibands -- 7.28 Dispersion Relation Analysis for Small Anti-dot Area -- 7.29 Landau Minibands -- 7.30 Statistical Thermodynamics of Group VI Dichalcogenides in Magnetic Field -- 7.31 Thermodynamic Functions: Relations -- 7.32 Wilson's Evaluation in Terms of Ordinary Partition Function -- 7.33 Retarded Green's Fn. and Ordinary Partition Function -- 7.34 Thermodynamic Green's Function and Spectral Weight A -- 7.35 Landau Quantized Dichalcogenide Spectral Weight -- 7.36 Dichalcogenide Grand Potential: Degenerate Regime -- 7.37 Contour Integral for Ω: Degenerate Regime -- 7.38 Grand Potential in the Degenerate Regime: Further Comments -- 7.39 Magnetic Moment of Landau Quantized Dichalcogenides -- 7.40 Entropy of Landau Quantized Dichalcogenides -- Specific Heat -- References -- 8 T-3 "DICED" LATTICE Quantum Dynamics and Statistical Thermodynamics (a) Zero Magnetic Field and (b) Landau Quantized -- 8.1 Introduction -- 8.2 Dynamics and Statistical Thermodynamics of the T-3 Diced Lattice -- 8.3 "Diced" Lattice: Retarded Green's Fn. Gret at Zero Field -- 8.4 Statistical Thermodynamic Functions: Diced Lattice -- 8.5 Grand Potential Ω -- 8.6 Degenerate Regime Continued: Ω Calculation -- 8.7 Contour Integration for Ω -- 8.8 Ω In the Degenerate Regime -- 8.9 Entropy and Specific Heat: Degenerate Regime -- 8.10 T-3 "Diced" Lattice in Quantizing Magnetic Field B -- 8.11 Green's Function Equations (9 Elements Gij) -- 8.12 Gij ("0245R,ω) Solutions -- Energy Spectrum -- 8.13 Grand Potential Ω for Diced Lattice In Magnetic Field.
8.14 Ω for Landau Quantized Diced Lattice: Degenerate Regime: µβto infty -- 8.15 Magnetic Moment M of Diced Lattice: Degenerate Regime ( T to 0 ) -- 8.16 Magnetic Moment M of Diced Lattice: Temperature Corrections ΔM in the Approach to T = 0 -- 8.17 Entropy and Specific Heat of Landau-Quantized Diced Lattice -- 8.18 Summary: T-3 Diced Lattice-Zero Field Statistical Thermodynamic Degenerate Regime -- 8.19 Summary: T-3 Diced Lattice-Magnetic Field Statistical Thermodynamics (A) Degenerate Regime -- 8.20 Summary: T-3 Diced Lattice-Magnetic Field Statistical Thermodynamics (B) Degenerate Regime -- References -- 9 Exact Temperature and Density Dependencies of the Statistical Thermodynamic Functions of the Pseudospin-1 Diced Lattice Carriers -- 9.1 Introduction -- 9.2 Calculations -- 9.3 Degenerate Limit -- 9.4 Non-degenerate Limit -- 9.5 Discussion -- References -- 10 Non-Markovian Fermionic Quantum State Diffusion Approach -- 10.1 Introduction -- 10.2 The NMQSD Theory for Quantum System Coupled to Fermionic Baths -- 10.2.1 The General Stochastic Schrödinger Equation and the Corresponding Master Equation -- 10.2.2 Examples of Solving Fermionic Bath with Fermionic NMQSD Equation -- 10.2.3 Summary -- 10.3 NMQSD Theory for a Quantum System Coupled to a Hybrid Bath -- 10.3.1 Hybrid Baths: Commutative and Anti-commutative Cases -- 10.3.2 Commutative Hybrid Bath -- 10.3.3 Anti-commutative Hybrid Bath -- 10.3.4 Summary -- 10.4 Conclusion -- 10.5 Appendix: Grassmann Algebra and Fermionic Coherent State -- References -- 11 Synthetic Spin-Orbit-Coupling in Ultracold Atomic Gases and Topological Superfluids -- 11.1 Introduction -- 11.2 Spin-Orbit-Coupled Bose-Einstein Condensate -- 11.2.1 Synthetic Spin-Orbit-Coupling -- 11.2.2 Mean-Field Description -- 11.2.3 Hydrodynamic Theory -- 11.2.4 Low-Energy Collective Modes.
11.3 Spin-Orbit-Coupled Fermi Gas and Topological Superfluid.
Record Nr. UNISA-996495162903316
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Progress in nanoscale and low-dimensional materials and devices : properties, synthesis, characterization, modelling and applications / / Hilmi Ünlü, Norman J. M. Horing, editors
Progress in nanoscale and low-dimensional materials and devices : properties, synthesis, characterization, modelling and applications / / Hilmi Ünlü, Norman J. M. Horing, editors
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (939 pages)
Disciplina 620.115
Collana Topics in applied physics
Soggetto topico Nanostructured materials - Industrial applications
Low-dimensional semiconductors
Nanotechnology
ISBN 3-030-93460-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- Contributors -- 1 Modelling of Semiconductors for Low Dimensional Heterostructure Devices -- 1.1 Introduction -- 1.2 Strain in Low Dimensional Heterostructures -- 1.3 Composition Effects in Ternary/Binary Heterostructures -- 1.4 Electronic Band Structure Modelling -- 1.5 Semiempirical Tight Binding Modelling -- 1.5.1 Semiempirical sp3 Tight Binding Theory -- 1.5.2 Semiempirical sp3s* Tight Binding Theory -- 1.5.3 Semiempirical sp3d5 Tight Binding Theory -- 1.5.4 Semiempirical sp3d5s* Tight Binding Theory -- 1.6 Density Functional Theory Modelling -- 1.7 Tight Binding and DFT-MBJLDA Modelling of Band Offsets -- 1.8 Pressure Effects on Structure and Electronic Properties -- 1.8.1 Structural Parameters -- 1.8.2 Electronic Properties -- 1.9 Finite Difference Method for Low Dimensional Structures -- 1.9.1 Application of Finite Difference Method to Quantum Wells -- 1.9.2 Application of Finite Difference Method to Quantum Wires -- 1.9.3 Finite Difference Method Applied to Quantum Dots -- 1.10 Conclusion -- References -- 2 Strain in Microscale and Nanoscale Semiconductor Heterostructures -- 2.1 Introduction -- 2.2 Strain in Planar and Core/Shell Heterostructures -- 2.3 Strain in Microscale Planar Heterostructures -- 2.4 Strain in Spherical Core/Shell Heterostructures -- 2.5 Strain in Cylindrical Core/Shell Heterostructures -- 2.6 Interface Strain and Morphology in Core/Shell QDs -- 2.7 Bandgaps and Band Offsts in Core/Shell Heterostructures -- 2.8 Strain Effects on Bandgaps and Band Offsets -- 2.9 Comparison of Measured and Predicted Core Bandgaps -- 2.9.1 Comparison of Predicted and Extracted Band Offsets -- 2.9.2 Conclusions and Suggestions -- References -- 3 Synthesis, Characterization and Modelling of Colloidal Quantum Dots -- 3.1 Introduction -- 3.2 Synthesis of CdSe Core and CdSe/ZnS Core/Shell QDs.
3.2.1 Synthesis of CdSe Core QDs -- 3.2.2 Growth of ZnS Shells on CdSe Core -- 3.3 HRTEM Characterization -- 3.4 XRD Characterization -- 3.5 Optical Absorption and Emission Characteristics -- 3.5.1 UV-Vis Characterization -- 3.5.2 Fluorescence Characterization -- 3.5.3 UV-Vis, PL and Stokes Shift -- 3.6 Dielectric Spectroscopy Characterization -- 3.7 Precursor Ratio Effect on Nanoparticle Growth -- 3.8 Emission Quality and PL Yield -- 3.9 Stability of CdSe Quantum Dots -- 3.10 Strain Effects on Size and Core Bandgap -- 3.11 Conclusion -- References -- 4 Synthesis of Transition Metal Dichalcogenides (TMDs) -- 4.1 Introduction -- 4.2 Mechanical Exfoliation -- 4.2.1 Scotch-Tape Method -- 4.2.2 Metal-Assisted Method -- 4.2.3 Layer-Resolved Splitting (LRS) Method -- 4.3 Liquid-Phase Exfoliation -- 4.3.1 Organic Solvent-Based Exfoliation Method -- 4.3.2 Ion Intercalation Method -- 4.4 Chemical Vapor Deposition (CVD) -- 4.4.1 Thermal Chemical Vapor Deposition -- 4.4.2 Metal-Organic Chemical Vapor Deposition (MOCVD) -- 4.4.3 Chemical Vapor Transport (CVT) Method -- 4.5 Molecular Beam Epitaxy (MBE) -- 4.6 Doping/Alloy of Transition Metal Dichalcogenides -- 4.6.1 Substitution of Cation Elements in TMDs -- 4.6.2 Substitution of Anion Elements in TMDs -- 4.7 Summary -- References -- 5 II-VI Semiconductor Quantum Dots: The Evolution of Color Purity with Structure -- 5.1 Introduction to II-VI Semiconductor Quantum Dots in Glass and Quantum Size Effect -- 5.2 Quantum Size Effect -- 5.3 Synthesis of Quantum Dots in Aqueous Solution -- 5.3.1 Aqueous Synthesis of CdTe Quantum Dots -- 5.4 Investigation of Optical and Structural Properties of CdTe Thin Films -- 5.4.1 Experimental Details -- 5.4.2 Effect of Grain Size and Strain on Bandgap Energy -- 5.4.3 Urbach Energy -- 5.4.4 XRD Spectra -- 5.4.5 Williamson-Hall Analysis of X-Ray Diffraction -- 5.4.6 Raman Spectra.
5.4.7 Conclusion -- 5.5 Difficulties in the Thin Film Growth of ZnO and Defect Structure -- 5.6 Colorimetric Evaluation of Group II-VI Quantum Dots in Glass Matrix -- 5.6.1 Materials and Methods -- 5.6.2 Results and Discussions -- References -- 6 Recent Progress in Magnetic Nanostructures Studied by Synchrotron Radiation -- 6.1 Introduction -- 6.2 XMCD and XAFS Study for Thin Film -- 6.2.1 Methodology -- 6.2.2 XMCD and XAFS for Cluster-Layered Fe/Cr Films -- 6.2.3 Other Applications -- 6.3 Mössbauer Spectroscopy for Thin Films Using Synchrotron Radiation -- 6.3.1 Mössbauer Spectroscopy for Thin Films -- 6.3.2 Synchrotron Mössbauer Source -- 6.3.3 Mössbauer Spectroscopy with Monoatomic Layer Spatial Resolution -- 6.3.4 Other Applications -- References -- 7 Quantum Dynamics and Statistical Thermodynamics of Nanostructured Dirac-Like Materials in a Magnetic Field -- 7.1 Introduction -- 7.2 Dirac "Relativistic" Materials -- 7.3 Calculations A: Graphene and Dichalcogenides -- 7.4 Calculations B -- 7.5 Diced Lattice Calculations -- 7.6 Work in Progress and Planned -- 7.7 Hamiltonian: H proptop -- π = p + eA c -- 7.8 Green's Function Equa. and Magnetic Field Gauge -- 7.9 Retarded Green's Function Equation -- 7.10 Diagonal Green's Function Analysis -- 7.11 Conservation of Angular Momentum -- 7.12 Diagonal Green's Function Solution -- 7.13 Dichalcogenide Energy Spectrum -- 7.14 Off-Diagonal Elements -- 7.15 Other Representations (Notation: ρ=sqrtg2+ε2npm ) -- 7.16 Thermodynamic Green's Function and Spectral Weight Matrix A -- 7.17 Spectral Weight Matrix (Matrix Elements of A rightarrow Aij) -- 7.18 Model Function Dot Green's fn. Gdot-Graphene -- 7.19 Landau Quantized Energy Spectrum: Graphene-Dot -- 7.20 Model Q-Wire Green's Function GW-Dichalcogenide -- 7.21 Q-Wire Green's Fn. Elements (Gr review) -- 7.22 Model Q-Wire Eigenenergy Dispersion Relation.
7.23 Landau Quantized Dichalcogenide Q-Wire Energy Spectrum -- 7.24 Model Q-Anti-dot Lattice Dichalcogenide Landau Minibands -- 7.25 Lattice GL-Fn. In Magnetic Field: Analysis -- 7.26 Solution for Lattice GL-Function -- 7.27 Q-Anti-dot Lattice Energy Spectrum: Landau Minibands -- 7.28 Dispersion Relation Analysis for Small Anti-dot Area -- 7.29 Landau Minibands -- 7.30 Statistical Thermodynamics of Group VI Dichalcogenides in Magnetic Field -- 7.31 Thermodynamic Functions: Relations -- 7.32 Wilson's Evaluation in Terms of Ordinary Partition Function -- 7.33 Retarded Green's Fn. and Ordinary Partition Function -- 7.34 Thermodynamic Green's Function and Spectral Weight A -- 7.35 Landau Quantized Dichalcogenide Spectral Weight -- 7.36 Dichalcogenide Grand Potential: Degenerate Regime -- 7.37 Contour Integral for Ω: Degenerate Regime -- 7.38 Grand Potential in the Degenerate Regime: Further Comments -- 7.39 Magnetic Moment of Landau Quantized Dichalcogenides -- 7.40 Entropy of Landau Quantized Dichalcogenides -- Specific Heat -- References -- 8 T-3 "DICED" LATTICE Quantum Dynamics and Statistical Thermodynamics (a) Zero Magnetic Field and (b) Landau Quantized -- 8.1 Introduction -- 8.2 Dynamics and Statistical Thermodynamics of the T-3 Diced Lattice -- 8.3 "Diced" Lattice: Retarded Green's Fn. Gret at Zero Field -- 8.4 Statistical Thermodynamic Functions: Diced Lattice -- 8.5 Grand Potential Ω -- 8.6 Degenerate Regime Continued: Ω Calculation -- 8.7 Contour Integration for Ω -- 8.8 Ω In the Degenerate Regime -- 8.9 Entropy and Specific Heat: Degenerate Regime -- 8.10 T-3 "Diced" Lattice in Quantizing Magnetic Field B -- 8.11 Green's Function Equations (9 Elements Gij) -- 8.12 Gij ("0245R,ω) Solutions -- Energy Spectrum -- 8.13 Grand Potential Ω for Diced Lattice In Magnetic Field.
8.14 Ω for Landau Quantized Diced Lattice: Degenerate Regime: µβto infty -- 8.15 Magnetic Moment M of Diced Lattice: Degenerate Regime ( T to 0 ) -- 8.16 Magnetic Moment M of Diced Lattice: Temperature Corrections ΔM in the Approach to T = 0 -- 8.17 Entropy and Specific Heat of Landau-Quantized Diced Lattice -- 8.18 Summary: T-3 Diced Lattice-Zero Field Statistical Thermodynamic Degenerate Regime -- 8.19 Summary: T-3 Diced Lattice-Magnetic Field Statistical Thermodynamics (A) Degenerate Regime -- 8.20 Summary: T-3 Diced Lattice-Magnetic Field Statistical Thermodynamics (B) Degenerate Regime -- References -- 9 Exact Temperature and Density Dependencies of the Statistical Thermodynamic Functions of the Pseudospin-1 Diced Lattice Carriers -- 9.1 Introduction -- 9.2 Calculations -- 9.3 Degenerate Limit -- 9.4 Non-degenerate Limit -- 9.5 Discussion -- References -- 10 Non-Markovian Fermionic Quantum State Diffusion Approach -- 10.1 Introduction -- 10.2 The NMQSD Theory for Quantum System Coupled to Fermionic Baths -- 10.2.1 The General Stochastic Schrödinger Equation and the Corresponding Master Equation -- 10.2.2 Examples of Solving Fermionic Bath with Fermionic NMQSD Equation -- 10.2.3 Summary -- 10.3 NMQSD Theory for a Quantum System Coupled to a Hybrid Bath -- 10.3.1 Hybrid Baths: Commutative and Anti-commutative Cases -- 10.3.2 Commutative Hybrid Bath -- 10.3.3 Anti-commutative Hybrid Bath -- 10.3.4 Summary -- 10.4 Conclusion -- 10.5 Appendix: Grassmann Algebra and Fermionic Coherent State -- References -- 11 Synthetic Spin-Orbit-Coupling in Ultracold Atomic Gases and Topological Superfluids -- 11.1 Introduction -- 11.2 Spin-Orbit-Coupled Bose-Einstein Condensate -- 11.2.1 Synthetic Spin-Orbit-Coupling -- 11.2.2 Mean-Field Description -- 11.2.3 Hydrodynamic Theory -- 11.2.4 Low-Energy Collective Modes.
11.3 Spin-Orbit-Coupled Fermi Gas and Topological Superfluid.
Record Nr. UNINA-9910619266503321
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui