top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Hybrid Materials for Piezoelectric Energy Harvesting and Conversion
Hybrid Materials for Piezoelectric Energy Harvesting and Conversion
Autore Ali S. Wazed
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2024
Descrizione fisica 1 online resource (355 pages)
Disciplina 621.381044
Altri autori (Persone) BairagiSatyaranjan
Ul IslamShahid
Soggetto topico Piezoelectric materials
Energy harvesting
ISBN 9781394150373
1394150377
9781394150359
1394150350
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- List of Contributors -- Preface -- Chapter 1 Introduction to Hybrid Piezoelectric Materials -- 1.1 Introduction -- 1.2 The Concept of Piezoelectricity -- 1.2.1 History of Piezoelectricity -- 1.2.2 The Piezoelectric Effect -- 1.3 Comparison between Piezoelectric Materials -- 1.4 Piezoelectric Material Types -- 1.4.1 Inorganic Piezoelectric Materials -- 1.4.1.1 Single Crystal‐Based Piezoelectric Materials -- 1.4.1.2 Ceramic‐Based Piezoelectric Materials -- 1.4.2 Organic Piezo Materials -- 1.4.2.1 PVDF -- 1.4.2.2 Polylactic Acid (PLA) -- 1.4.3 Hybrid Piezoelectric Materials -- 1.4.3.1 PVDF-PZT systems -- 1.4.3.2 BaTiO3/PVDF -- 1.4.3.3 ZnO-PVDF -- 1.5 Connectivity of Composites Similar in Hybrid Systems -- 1.6 Fabrication and Characterization of Hybrid Piezoelectric Materials -- 1.6.1 Cold‐pressing and Curing‐molding Method -- 1.6.2 Cold Sintering Process -- 1.6.3 Electrospinning (ES) -- 1.6.4 Solvent‐casting Method -- 1.7 Piezoelectric Energy Harvesters (PEHs) System -- 1.7.1 Cantilever Configuration of PEH -- 1.7.2 Circular Diaphragm Configuration of PEH -- 1.7.3 Cymbal Configuration of PEH -- 1.7.4 Stacked Configuration of PEH -- 1.8 Application of Hybrid Materials for Hybrid Energy‐Harvesting Systems -- 1.8.1 Piezoelectric and Electromagnetic Hybrid Systems -- 1.8.2 Piezoelectric-Triboelectric Hybrid Systems -- 1.8.3 Triboelectric, Piezoelectric, and Electromagnetic Hybrid System -- 1.9 Present Development Challenges and Future Perspectives -- 1.10 Conclusion -- References -- Chapter 2 KNN‐Based Hybrid Piezoelectric Materials -- 2.1 Introduction -- 2.2 Lead‐Free Ceramics -- 2.2.1 Inorganic Piezoelectric Ceramics -- 2.3 Potassium Sodium Niobate (KNN): A Piezoelectric Material -- 2.4 Potassium Sodium Niobate (KNN)‐Based Hybrid Piezoelectric Materials -- 2.5 Applications -- 2.6 Conclusion -- References.
Chapter 3 MoS2‐Based Hybrid Piezoelectric Materials -- 3.1 Introduction -- 3.2 Different Methods of MoS2 Synthesis -- 3.2.1 Exfoliation Method -- 3.2.2 Hydrothermal Method -- 3.2.3 CVD Method -- 3.3 MoS2 Working Mechanism -- 3.4 Investigating the Transition of MoS2 Structure from Bulk to Nanostructured Materials -- 3.5 Piezoelectric Energy Harvesting by MoS2 Composites -- 3.6 Conclusions -- References -- Chapter 4 BaTiO3‐Based Hybrid Piezoelectric Materials -- 4.1 Introduction -- 4.2 Structure and Piezoelectric Properties of BaTiO3 Perovskite -- 4.3 Synthesis of Barium Titanate -- 4.4 Barium Titanate‐Based Hybrid Piezoelectric Materials -- 4.4.1 Modified BaTiO3 Crystal Lattice -- 4.4.2 Composite Containing BaTiO3 -- 4.4.3 Piezoelectric Cum Triboelectric Energy Harvester -- 4.5 Applications -- 4.6 Conclusion -- References -- Chapter 5 BNT‐Based Hybrid Piezoelectric Materials -- 5.1 Introduction -- 5.2 Key Limitations of BNT and Ways to Overcome the Limitations -- 5.3 Applicability of BNT‐Based Materials for Piezoelectric Energy Harvesting -- 5.4 BNT/Piezoelectric Polymer‐Based Piezoelectric Energy Harvesters -- 5.5 BNT/Non‐Piezoelectric Polymer‐Based Piezoelectric Energy Harvesters -- 5.6 BNT‐Based Other Mechanical Energy Harvesters -- 5.7 Challenges and Future Scopes -- 5.8 Conclusion -- Acknowledgments -- References -- Chapter 6 ZnSnO3‐Based Hybrid Piezoelectric Materials -- 6.1 Introduction -- 6.2 Synthesis of Zinc Stannate -- 6.2.1 Synthesis of ZTO by Thermal Evaporation -- 6.2.2 Synthesis of ZTO by Chemical Vapor Deposition (CVD) -- 6.2.3 Synthesis of ZTO by Sol-Gel Synthesis -- 6.2.4 Synthesis of ZTO by Coprecipitation -- 6.2.5 Synthesis of ZTO by Hydrothermal Reaction -- 6.2.6 Synthesis of ZTO by Ion‐Exchange Reaction -- 6.2.7 Synthesis of ZTO by Solid‐State Reaction -- 6.2.8 Synthesis of ZTO by Electrospinning.
6.3 Morphologies and Properties of Zinc Stannate -- 6.4 Uses of Zinc Stannate and Hybrids in Piezoelectric Nanogenerators -- 6.5 Conclusion -- Acknowledgments -- References -- Chapter 7 ZnFe2O4‐Based Hybrid Piezoelectric Materials -- 7.1 Introduction -- 7.2 Current Scenario, Challenges in This Field and Scope of the Chapter -- 7.3 Fabrication Strategy of the Nanocomposites -- 7.4 The Controlling Factors of β‐phase Formation in Composites and its Property -- 7.4.1 Effect of Conducting Filler Addition -- 7.5 ZF Nanorod (High Aspect Ratio) and Copolymer PVDF-HFP-Based Nanocomposite -- 7.6 Applications Still Explored and Future Scope -- 7.6.1 Powering Commercial LEDs in Series Connection and Charging Different Capacitors by Single Finger Tapping -- 7.6.2 Energy‐Harvesting Performance from Human Body Movement -- 7.6.3 Energy Harvesting from Ambient Airflow -- 7.6.4 Application as Self‐Powered Pressure Sensor/Height Monitor -- 7.7 Conclusion -- 7.8 Future Direction -- References -- Chapter 8 Conductive Filler‐Based Hybrid Piezoelectric Materials -- 8.1 Introduction -- 8.2 Piezoelectricity: A Brief Overview -- 8.3 Role of Conductive Fillers in Piezoelectric Materials -- 8.4 Conductive Filler‐Based Piezoelectric Materials -- 8.4.1 Carbon‐Based Piezoelectric Materials -- 8.4.2 Metal‐Based Piezoelectric Materials -- 8.4.3 Polymer‐Based Piezoelectric Materials -- 8.4.3.1 PVDF‐Based Polymeric Materials -- 8.4.3.2 Non‐PVDF‐Based Piezoelectric Polymers -- 8.5 Applications -- 8.5.1 Sensing and Actuation -- 8.5.2 Energy Harvesting -- 8.5.3 Structural Health Monitoring -- 8.5.4 Flexible/Wearable Electronics -- 8.5.5 Electromechanical Devices -- 8.6 Summary -- 8.7 Challenges -- References -- Chapter 9 Semiconductive Filler‐Based Hybrid Piezoelectric Materials -- 9.1 Introduction -- 9.2 Piezoelectric Materials.
9.3 Semiconductor‐Modified Hybrid Piezoelectric Materials -- 9.3.1 Semiconductor‐Modified Lead‐Based Hybrid Piezoelectric Materials -- 9.3.2 Semiconductor‐Modified Lead‐Free Hybrid Piezoelectric Materials -- 9.4 Semiconductive Filler‐Based Hybrid Piezoelectric Energy Harvesters -- 9.5 Applications -- 9.6 Conclusion -- References -- Chapter 10 Cellulose‐Based Hybrid Piezoelectric Materials -- 10.1 Introduction -- 10.2 Origin of Piezoelectricity in Cellulose -- 10.3 Different Crystal Structures and Forms of Cellulose -- 10.4 Cellulose‐Based Hybrid Piezoelectric Devices Containing Cellulose as Matrix -- 10.4.1 Molybdenum Disulphide (MoS2) as Filler -- 10.4.2 Barium Titanate (BaTiO3) as Filler -- 10.4.3 Other Fillers and Blends -- 10.5 Cellulose‐Based Hybrid Piezoelectric Devices Containing Cellulose as Filler -- 10.6 Conclusion -- References -- Chapter 11 Collagen‐Based Hybrid Piezoelectric Material -- 11.1 Introduction -- 11.2 Origin of Piezoelectricity in Collagen -- 11.3 Application of Collagen‐based Hybrid Piezoelectric Systems -- 11.4 Collagen‐Based Piezoelectric Nanogenerator -- 11.5 Collagen‐based Supercapacitors -- 11.6 Collagen‐based Sensors -- 11.7 Collagen‐based Memory Devices -- 11.8 Collagen‐based Tissue Engineering Scaffolds -- 11.9 Conclusion and Future Prospects -- References -- Chapter 12 Chitin and Chitosan-Foremost Hybrid Piezoelectric Materials for Energy Harvesting Applications -- 12.1 Introduction -- 12.2 Chitin and its Application as Piezoelectric Material -- 12.3 Chitosan and its Applications as Piezoelectric Materials -- 12.4 Problems -- 12.5 Future Scope -- References -- Index -- EULA.
Record Nr. UNINA-9911019381603321
Ali S. Wazed  
Newark : , : John Wiley & Sons, Incorporated, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Organic-Based Nanomaterials in Food Packaging / / edited by Kaiser Younis, Owais Yousuf, Shahid Ul Islam
Organic-Based Nanomaterials in Food Packaging / / edited by Kaiser Younis, Owais Yousuf, Shahid Ul Islam
Autore Younis Kaiser
Edizione [1st ed. 2024.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024
Descrizione fisica 1 online resource (238 pages)
Disciplina 641.3
664
Altri autori (Persone) YousufOwais
Ul IslamShahid
Soggetto topico Food science
Food - Analysis
Chemistry
Food - Microbiology
Food security
Food Science
Food Chemistry
Food Microbiology
Food Security
ISBN 9783031638299
9783031638282
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Organic nanomaterials and their synthesis -- Characteristics, composition, and structure of organic nanomaterials -- Mechanical Properties of Organic Nanomaterials for Food Packaging -- Organic- Based Nanomaterials and their use in Food Packaging -- Cellulose based nanomaterials for food packaging: Opportunities and challenges -- Starch-based nanomaterials for food packaging -- Chitosan-based nanomaterials for food packaging -- Proteins-based nanomaterials for food packaging -- Conjugated organic nanomaterials -- Nano-Emulsions for Edible Coating -- Safety and Regulatory Issues of Organic Nanomaterial.
Record Nr. UNINA-9910878061003321
Younis Kaiser  
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui