top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Output coupling in optical cavities and lasers [[electronic resource] ] : a quantum theoretical approach / / Kikuo Ujihara
Output coupling in optical cavities and lasers [[electronic resource] ] : a quantum theoretical approach / / Kikuo Ujihara
Autore Ujihara Kikuo
Pubbl/distr/stampa Weinheim, : Wiley, c2010
Descrizione fisica 1 online resource (410 p.)
Disciplina 621.366
621.3661
Soggetto topico Lasers
Optical communications
Soggetto genere / forma Electronic books.
ISBN 1-282-55034-9
9786612550348
3-527-63049-X
3-527-63050-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Output Coupling in Optical Cavities and Lasers; Contents; Preface; Acknowledgments; 1 A One-Dimensional Optical Cavity with Output Coupling: Classical Analysis; 1.1 Boundary Conditions at Perfect Conductor and Dielectric Surfaces; 1.2 Classical Cavity Analysis; 1.2.1 One-Sided Cavity; 1.2.2 Symmetric Two-Sided Cavity; 1.3 Normal Mode Analysis: Orthogonal Modes; 1.3.1 One-Sided Cavity; 1.3.2 Symmetric Two-Sided Cavity; 1.4 Discrete versus Continuous Mode Distribution; 1.5 Expansions of the Normalization Factor; 1.6 Completeness of the Modes of the ''Universe''
2 A One-Dimensional Optical Cavity with Output Coupling: Quantum Analysis2.1 Quantization; 2.2 Energy Eigenstates; 2.3 Field Commutation Relation; 2.4 Thermal Radiation and the Fluctuation-Dissipation Theorem; 2.4.1 The Density Operator of the Thermal Radiation Field; 2.4.2 The Correlation Function and the Power Spectrum; 2.4.3 The Response Function and the Fluctuation-Dissipation Theorem; 2.4.4 Derivation of the Langevin Noise for a Single Cavity Resonant Mode; 2.4.5 Excitation of the Cavity Resonant Mode by a Current Impulse; 2.5 Extension to an Arbitrarily Stratified Cavity
2.5.1 Description of the Cavity Structure2.5.2 The Modes of the ''Universe''; 3 A One-Dimensional Quasimode Laser: General Formulation; 3.1 Cavity Resonant Modes; 3.2 The Atoms; 3.3 The Atom-Field Interaction; 3.4 Equations Governing the Atom-Field Interaction; 3.5 Laser Equation of Motion: Introducing the Langevin Forces; 3.5.1 The Field Decay; 3.5.2 Relaxation in Atomic Dipole and Atomic Inversion; 4 A One-Dimensional Quasimode Laser: Semiclassical and Quantum Analysis; 4.1 Semiclassical Linear Gain Analysis; 4.2 Semiclassical Nonlinear Gain Analysis; 4.3 Quantum Linear Gain Analysis
4.4 Quantum Nonlinear Gain Analysis5 A One-Dimensional Laser with Output Coupling: Derivation of the Laser Equation of Motion; 5.1 The Field; 5.2 The Atoms; 5.3 The Atom-Field Interaction; 5.4 Langevin Forces for the Atoms; 5.5 Laser Equation of Motion for a Laser with Output Coupling; 6 A One-Dimensional Laser with Output Coupling: Contour Integral Method; 6.1 Contour Integral Method: Semiclassical Linear Gain Analysis; 6.2 Contour Integral Method: Semiclassical Nonlinear Gain Analysis; 6.3 Contour Integral Method: Quantum Linear Gain Analysis
6.4 Contour Integral Method: Quantum Nonlinear Gain Analysis7 A One-Dimensional Laser with Output Coupling: Semiclassical Linear Gain Analysis; 7.1 The Field Equation Inside the Cavity; 7.2 Homogeneously Broadened Atoms and Uniform Atomic Inversion; 7.3 Solution of the Laser Equation of Motion; 7.3.1 The Field Equation for Inside the Cavity; 7.3.2 Laplace-Transformed Equations; 7.3.3 The Field Inside the Cavity; 7.3.4 The Field Outside the Cavity; 8 A One-Dimensional Laser with Output Coupling: Semiclassical Nonlinear Gain Analysis; 8.1 The Field Equation Inside the Cavity
8.2 Homogeneously Broadened Atoms and Uniform Pumping
Record Nr. UNINA-9910139354003321
Ujihara Kikuo  
Weinheim, : Wiley, c2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Output coupling in optical cavities and lasers [[electronic resource] ] : a quantum theoretical approach / / Kikuo Ujihara
Output coupling in optical cavities and lasers [[electronic resource] ] : a quantum theoretical approach / / Kikuo Ujihara
Autore Ujihara Kikuo
Pubbl/distr/stampa Weinheim, : Wiley, c2010
Descrizione fisica 1 online resource (410 p.)
Disciplina 621.366
621.3661
Soggetto topico Lasers
Optical communications
ISBN 1-282-55034-9
9786612550348
3-527-63049-X
3-527-63050-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Output Coupling in Optical Cavities and Lasers; Contents; Preface; Acknowledgments; 1 A One-Dimensional Optical Cavity with Output Coupling: Classical Analysis; 1.1 Boundary Conditions at Perfect Conductor and Dielectric Surfaces; 1.2 Classical Cavity Analysis; 1.2.1 One-Sided Cavity; 1.2.2 Symmetric Two-Sided Cavity; 1.3 Normal Mode Analysis: Orthogonal Modes; 1.3.1 One-Sided Cavity; 1.3.2 Symmetric Two-Sided Cavity; 1.4 Discrete versus Continuous Mode Distribution; 1.5 Expansions of the Normalization Factor; 1.6 Completeness of the Modes of the ''Universe''
2 A One-Dimensional Optical Cavity with Output Coupling: Quantum Analysis2.1 Quantization; 2.2 Energy Eigenstates; 2.3 Field Commutation Relation; 2.4 Thermal Radiation and the Fluctuation-Dissipation Theorem; 2.4.1 The Density Operator of the Thermal Radiation Field; 2.4.2 The Correlation Function and the Power Spectrum; 2.4.3 The Response Function and the Fluctuation-Dissipation Theorem; 2.4.4 Derivation of the Langevin Noise for a Single Cavity Resonant Mode; 2.4.5 Excitation of the Cavity Resonant Mode by a Current Impulse; 2.5 Extension to an Arbitrarily Stratified Cavity
2.5.1 Description of the Cavity Structure2.5.2 The Modes of the ''Universe''; 3 A One-Dimensional Quasimode Laser: General Formulation; 3.1 Cavity Resonant Modes; 3.2 The Atoms; 3.3 The Atom-Field Interaction; 3.4 Equations Governing the Atom-Field Interaction; 3.5 Laser Equation of Motion: Introducing the Langevin Forces; 3.5.1 The Field Decay; 3.5.2 Relaxation in Atomic Dipole and Atomic Inversion; 4 A One-Dimensional Quasimode Laser: Semiclassical and Quantum Analysis; 4.1 Semiclassical Linear Gain Analysis; 4.2 Semiclassical Nonlinear Gain Analysis; 4.3 Quantum Linear Gain Analysis
4.4 Quantum Nonlinear Gain Analysis5 A One-Dimensional Laser with Output Coupling: Derivation of the Laser Equation of Motion; 5.1 The Field; 5.2 The Atoms; 5.3 The Atom-Field Interaction; 5.4 Langevin Forces for the Atoms; 5.5 Laser Equation of Motion for a Laser with Output Coupling; 6 A One-Dimensional Laser with Output Coupling: Contour Integral Method; 6.1 Contour Integral Method: Semiclassical Linear Gain Analysis; 6.2 Contour Integral Method: Semiclassical Nonlinear Gain Analysis; 6.3 Contour Integral Method: Quantum Linear Gain Analysis
6.4 Contour Integral Method: Quantum Nonlinear Gain Analysis7 A One-Dimensional Laser with Output Coupling: Semiclassical Linear Gain Analysis; 7.1 The Field Equation Inside the Cavity; 7.2 Homogeneously Broadened Atoms and Uniform Atomic Inversion; 7.3 Solution of the Laser Equation of Motion; 7.3.1 The Field Equation for Inside the Cavity; 7.3.2 Laplace-Transformed Equations; 7.3.3 The Field Inside the Cavity; 7.3.4 The Field Outside the Cavity; 8 A One-Dimensional Laser with Output Coupling: Semiclassical Nonlinear Gain Analysis; 8.1 The Field Equation Inside the Cavity
8.2 Homogeneously Broadened Atoms and Uniform Pumping
Record Nr. UNINA-9910830282703321
Ujihara Kikuo  
Weinheim, : Wiley, c2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Output coupling in optical cavities and lasers : a quantum theoretical approach / / Kikuo Ujihara
Output coupling in optical cavities and lasers : a quantum theoretical approach / / Kikuo Ujihara
Autore Ujihara Kikuo
Pubbl/distr/stampa Weinheim, : Wiley, c2010
Descrizione fisica 1 online resource (410 p.)
Disciplina 621.366
621.3661
Soggetto topico Lasers
Optical communications
ISBN 1-282-55034-9
9786612550348
3-527-63049-X
3-527-63050-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Output Coupling in Optical Cavities and Lasers; Contents; Preface; Acknowledgments; 1 A One-Dimensional Optical Cavity with Output Coupling: Classical Analysis; 1.1 Boundary Conditions at Perfect Conductor and Dielectric Surfaces; 1.2 Classical Cavity Analysis; 1.2.1 One-Sided Cavity; 1.2.2 Symmetric Two-Sided Cavity; 1.3 Normal Mode Analysis: Orthogonal Modes; 1.3.1 One-Sided Cavity; 1.3.2 Symmetric Two-Sided Cavity; 1.4 Discrete versus Continuous Mode Distribution; 1.5 Expansions of the Normalization Factor; 1.6 Completeness of the Modes of the ''Universe''
2 A One-Dimensional Optical Cavity with Output Coupling: Quantum Analysis2.1 Quantization; 2.2 Energy Eigenstates; 2.3 Field Commutation Relation; 2.4 Thermal Radiation and the Fluctuation-Dissipation Theorem; 2.4.1 The Density Operator of the Thermal Radiation Field; 2.4.2 The Correlation Function and the Power Spectrum; 2.4.3 The Response Function and the Fluctuation-Dissipation Theorem; 2.4.4 Derivation of the Langevin Noise for a Single Cavity Resonant Mode; 2.4.5 Excitation of the Cavity Resonant Mode by a Current Impulse; 2.5 Extension to an Arbitrarily Stratified Cavity
2.5.1 Description of the Cavity Structure2.5.2 The Modes of the ''Universe''; 3 A One-Dimensional Quasimode Laser: General Formulation; 3.1 Cavity Resonant Modes; 3.2 The Atoms; 3.3 The Atom-Field Interaction; 3.4 Equations Governing the Atom-Field Interaction; 3.5 Laser Equation of Motion: Introducing the Langevin Forces; 3.5.1 The Field Decay; 3.5.2 Relaxation in Atomic Dipole and Atomic Inversion; 4 A One-Dimensional Quasimode Laser: Semiclassical and Quantum Analysis; 4.1 Semiclassical Linear Gain Analysis; 4.2 Semiclassical Nonlinear Gain Analysis; 4.3 Quantum Linear Gain Analysis
4.4 Quantum Nonlinear Gain Analysis5 A One-Dimensional Laser with Output Coupling: Derivation of the Laser Equation of Motion; 5.1 The Field; 5.2 The Atoms; 5.3 The Atom-Field Interaction; 5.4 Langevin Forces for the Atoms; 5.5 Laser Equation of Motion for a Laser with Output Coupling; 6 A One-Dimensional Laser with Output Coupling: Contour Integral Method; 6.1 Contour Integral Method: Semiclassical Linear Gain Analysis; 6.2 Contour Integral Method: Semiclassical Nonlinear Gain Analysis; 6.3 Contour Integral Method: Quantum Linear Gain Analysis
6.4 Contour Integral Method: Quantum Nonlinear Gain Analysis7 A One-Dimensional Laser with Output Coupling: Semiclassical Linear Gain Analysis; 7.1 The Field Equation Inside the Cavity; 7.2 Homogeneously Broadened Atoms and Uniform Atomic Inversion; 7.3 Solution of the Laser Equation of Motion; 7.3.1 The Field Equation for Inside the Cavity; 7.3.2 Laplace-Transformed Equations; 7.3.3 The Field Inside the Cavity; 7.3.4 The Field Outside the Cavity; 8 A One-Dimensional Laser with Output Coupling: Semiclassical Nonlinear Gain Analysis; 8.1 The Field Equation Inside the Cavity
8.2 Homogeneously Broadened Atoms and Uniform Pumping
Record Nr. UNINA-9910876518803321
Ujihara Kikuo  
Weinheim, : Wiley, c2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui