Nanobiohybrids for Advanced Wastewater Treatment and Energy Recovery |
Autore | Lens Piet |
Edizione | [1st ed.] |
Pubbl/distr/stampa | London : , : IWA Publishing, , 2023 |
Descrizione fisica | 1 online resource (244 pages) |
Disciplina | 628.35 |
Altri autori (Persone) | UddandaraoPriyanka |
Collana | Integrated Environmental Technology Series |
Soggetto topico |
Nanotechnology
Green technology |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Cover -- Contents -- List of Contributors -- Preface -- Part 1: Concepts of Microbial Synthesis, Water Purification and Energy Storage -- Chapter 1: Introduction to wastewater treatment and energy recovery -- 1.1 Introduction -- 1.2 Process Fundamentals -- 1.3 Building Blocks of NBs -- 1.4 Environmental Remediation -- 1.5 Wastewater Treatment -- References -- Chapter 2 : Addressing the global water crisis: a comprehensive review of nanobiohybrid applications for water purification -- 2.1 Introduction -- 2.2 Root Cause Behind Continuous Freshwater Shrinking -- 2.3 Methodical Handling of Water Pollution -- 2.3.1 Treatment technologies -- 2.3.2 Major drawbacks of current water purification techniques -- 2.4 Nanobiohybrid (NBIOH) Catalyst in Water Purification -- 2.4.1 Use of nanoparticles in water purification and their problems -- 2.4.2 Enzymes in water purification and their problems -- 2.4.3 Use of NBIOH catalyst for water purification -- 2.4.3.1 Capacity of NBIOH to treat water -- 2.4.3.2 Problems associated with nanobiohybrid -- 2.5 Conclusion -- References -- Chapter 3 : Biological production of nanoparticles and their application in photocatalysis -- 3.1 Introduction -- 3.2 Green Synthesis of Nanoparticles -- 3.3 Biological Nanoparticles -- 3.3.1 Plants -- 3.3.2 Bacteria -- 3.4 Fungi -- 3.5 Algae -- 3.6 Photocatalysis -- 3.6.1 Batch degradation of organic pollutants using NPs -- 3.6.2 Photobioreactors -- 3.6.3 Nanobiohybrids -- 3.7 Challenges -- 3.7.1 Toxicity -- 3.7.2 Nanoparticles detection -- 3.7.3 Light accessibility -- 3.8 Conclusion -- References -- Chapter 4 : Energy storage devices: batteries and supercapacitors -- 4.1 Introduction -- 4.2 Batteries: Principles and Operation -- 4.2.1 Battery basics.
4.2.1.1 Structure and components -- 4.2.1.2 Electrochemical reactions in batteries -- 4.2.2 Battery performance metrics -- 4.2.2.1 Cell, module, and pack level -- 4.2.2.2 Energy density -- 4.2.2.3 Power density -- 4.2.2.4 Specific energy (or gravimetric energy density) -- 4.2.2.5 Specific power (or gravimetric power density) -- 4.2.2.6 Cycle life -- 4.2.2.7 Charge-discharge efficiency -- 4.2.2.8 Self-discharge rate -- 4.2.2.9 Operating temperature -- 4.2.2.10 Impedance -- 4.2.2.11 Round-trip efficiency -- 4.3 Types of Batteries -- 4.3.1 Nickel-cadmium batteries -- 4.3.2 Lead-acid batteries -- 4.3.2.1 Lead-acid battery composition -- 4.3.2.2 Working principle of lead acid battery -- 4.3.2.3 Market perspective -- 4.3.3 Lithium-ion batteries -- 4.3.3.1 Lithium-ion battery composition -- 4.3.3.2 Working principle of lithium-ion battery -- 4.3.3.3 Market perspective -- 4.3.4 Sodium-ion batteries -- 4.3.5 Zinc-air batteries -- 4.4 Supercapacitors -- 4.4.1 Principles and operations -- 4.4.1.1 Electric double-layer capacitance -- 4.4.1.2 Faradaic capacitance -- 4.4.2 Supercapacitor electrode materials -- 4.4.2.1 Electrode materials for EDLC -- 4.4.2.2 Electrode materials for pseudocapacitor -- 4.4.2.3 Electrode materials for hybrid supercapacitor -- 4.5 Types of Supercapacitors -- 4.5.1 Electrochemical double-layer capacitors -- 4.5.2 Pseudocapacitors -- 4.5.3 Hybrid capacitor -- 4.6 Applications of Batteries and Supercapacitors -- 4.6.1 Portable electronics and consumer applications -- 4.6.2 Mobility of the future -- 4.6.2.1 Electric vehicles and hybrid vehicles -- 4.6.2.2 Aerospace applications -- 4.6.3 New energy technologies -- 4.6.3.1 Renewable energy integration. 4.6.3.2 Grid-scale energy storage -- 4.6.4 Defence application -- 4.7 Conclusion -- References -- Part 2: Utility of Organic, Inorganic and Magnetic Nanoparticles -- Chapter 5 : Nanobiohybrids using organic nanoparticles for applications in water and wastewater treatment -- 5.1 Introduction -- 5.2 Production of Nanobiohybrids -- 5.2.1 Nanohybrids based on cellulose -- 5.2.2 Nanohybrids based on gelatin -- 5.2.3 Nanohybrids based on chitosan -- 5.2.4 Nanohybrids based on pectin -- 5.2.5 Nanohybrid based on silk protein -- 5.3 Nanobiohybrid Applications in Water and Wastewater Treatment -- 5.3.1 Nanobiohybrids as adsorbent -- 5.3.2 Nanobiohybrids as catalyst (nanobiocatalysis) -- 5.3.2.1 Polymeric nanobiocatalyst -- 5.3.2.2 Silica-based nanobiocatalysts -- 5.3.2.3 Carbon-based nanobiocatalysts -- 5.3.2.4 Metal-based nanobiocatalysts -- 5.4 Conclusion -- References -- Chapter 6 : Assessing the feasibility of inorganic nanomaterials for nanohybrids formation -- 6.1 Introduction -- 6.1.1 Production of nanoparticles -- 6.1.2 Microbial nanohybrids -- 6.1.3 Nanohybrid materials for wastewater treatment with respect to microbes -- 6.2 Biosynthesis of Metal NPS with Different Microbes -- 6.2.1 Bacteria -- 6.2.2 Algae -- 6.2.3 Fungi -- 6.3 Feasibility of Microbe-Based Biogenic NPs for Wastewater Treatment -- 6.3.1 Use of biogenic NPs to treat wastewater -- 6.3.2 Biogenic inorganic NPs -- 6.3.2.1 Bio-Fe and Bio-Mn NPs -- 6.3.2.2 Bio-Pd NPs -- 6.3.2.3 Bio-Au and Bio-Ag NPs -- 6.3.2.4 Bio-bimetal NPs -- 6.3.2.5 Composite Bio-Me NPs -- 6.4 Conclusions -- Acknowledgement -- References -- Chapter 7 : Sustainable wastewater treatment using magnetic nanohybrids -- 7.1 Introduction -- 7.2 Source of Pollutants. 7.2.1 Ore extraction -- 7.2.2 Electroplating -- 7.2.3 Water pollution -- 7.2.3.1 Pharmaceutical waste -- 7.2.3.2 Dyes -- 7.2.4 Radionuclides -- 7.3 Sustainable Wastewater Treatment with Nanohybrids -- 7.4 Magnetic Nanohybrids Materials for Water Contaminant Removal -- 7.4.1 Preparation of magnetic nanohybrid materials -- 7.4.2 Magnetic nanohybrid development -- 7.4.3 Mechanism of adsorptive removal of pollutants using magnetic nanohybrid materials -- 7.5 Factors Influencing Adsorption by Magnetic Nanohybrid Adsorbent -- 7.6 Removal of Water Pollutants Based on Magnetic Nanohybrid Catalyst -- 7.6.1 Carbon-based magnetic nanohybrid adsorbents -- 7.6.1.1 Activated charcoal/biochar-based materials -- 7.6.1.2 Carbon nanotubes -- 7.6.1.3 Graphene-based nanoadsorbents -- 7.6.1.4 Chitosan-based magnetic nanohybrid catalyst -- 7.6.2 Metal-based magnetic nanohybrid catalyst -- 7.6.2.1 Zeolites -- 7.6.2.2 Multi-metals-based magnetic nanohybrid catalyst -- 7.7 Future Prospectives with Challenges -- Acknowledgements -- References -- Chapter 8 : Feasibility of nanomaterials to support electroactive microbes in nanobiohybrids -- 8.1 Introduction -- 8.2 Inherent Bottlenecks for Electron Transfer in Natural EAB Cells -- 8.3 Nanomaterial Selection for Constructing Efficient Nanobiohybrids -- 8.3.1 Favorable electrical conductivity of NMs -- 8.3.1.1 Metal/metal oxide-based NPs and conductive carbon-based NMs -- 8.3.1.2 Conductive organic nanopolymers -- 8.3.2 Large specific surface area of NMs -- 8.3.3 Photocatalysis capability of NMs -- 8.3.3.1 Metal-based semiconductor NPs -- 8.3.3.2 Carbon-based semiconductor NPs -- 8.3.4 NMs stimulate production of cellular components related to electron transfer. 8.3.4.1 Increased production of c-Cyts in the presence of NMs -- 8.3.4.2 Increased EPS production in the presence of NMs -- 8.3.5 Special functionalized NMs used for cytoprotection in engineered nanobiohybrids -- 8.3.5.1 Biomimetic inorganic NPs -- 8.3.5.2 Nano-hydrogels -- 8.3.5.3 Hybrid coordination NMs -- 8.3.5.4 Artificial nanoenzymes -- 8.4 Assembly Protocols and Synthetic Strategies Employed for Different Functional Nanobiohybrid Systems -- 8.4.1 Internal bioaugmentation on an individual cell scale -- 8.4.2 External bioaugmentation on an individual cell scale -- 8.4.3 External bioaugmentation on the biofilm scale -- 8.5 Future Directions -- 8.5.1 Present challenges for nanobiohybrid development -- 8.5.2 Outlook for nanobiohybrid development -- Acknowledgments -- References -- Part 3: Environmental Remediation Using NBs -- Chapter 9 : Nanobiohybrids: a promising approach for sensing diverse environmental water pollutants -- 9.1 Introduction -- 9.2 Importance of Nanomaterials in the Nanobiohybrids -- 9.3 Choice of Nanomaterial -- 9.3.1 Metallic and metal oxide nanostructures -- 9.3.2 Carbonaceous nanomaterials -- 9.3.3 Quantum dots -- 9.3.4 Polymers -- 9.4 Nanobiohybrid Types: Based on Recognition Elements -- 9.4.1 Proteins and peptides -- 9.4.2 Nucleic acids -- 9.4.3 Carbohydrates -- 9.4.4 Whole cells -- 9.5 Nanobiohybrid Sensor Types Based on Transduction Pathways -- 9.5.1 Electrochemical nanobiohybrid sensors -- 9.5.2 Optical nanobiohybrid sensors -- 9.5.3 Magnetic nanobiohybrid sensors -- 9.5.4 Gravimetric nanobiohybrid sensors -- 9.5.5 Calorimetric nanobiohybrid sensors -- 9.6 Conclusion -- References -- Chapter 10 : Unlocking the potential of nanobiohybrids to combat environmental pollution -- 10.1 Introduction. 10.1.1 Need for environmental bioremediation. |
Record Nr. | UNINA-9910768494903321 |
Lens Piet | ||
London : , : IWA Publishing, , 2023 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Nanobiohybrids for Advanced Wastewater Treatment and Energy Recovery / Piet N.L. Lens, Priyanka Uddandarao |
Pubbl/distr/stampa | United Kingdom : , : IWA Publishing, , 2023 |
Descrizione fisica | 1 online resource (244 p.) |
Collana | Integrated Environmental Technology Series |
Soggetto topico |
Technology & Engineering / Mining
Science / Applied Sciences Science / Environmental Science Science |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910831804103321 |
United Kingdom : , : IWA Publishing, , 2023 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|