top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Multiple-Aspect Analysis of Semantic Trajectories [[electronic resource] ] : First International Workshop, MASTER 2019, Held in Conjunction with ECML-PKDD 2019, Würzburg, Germany, September 16, 2019, Proceedings / / edited by Konstantinos Tserpes, Chiara Renso, Stan Matwin
Multiple-Aspect Analysis of Semantic Trajectories [[electronic resource] ] : First International Workshop, MASTER 2019, Held in Conjunction with ECML-PKDD 2019, Würzburg, Germany, September 16, 2019, Proceedings / / edited by Konstantinos Tserpes, Chiara Renso, Stan Matwin
Autore Tserpes Konstantinos
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Springer Nature, 2020
Descrizione fisica 1 online resource (IX, 133 p. 93 illus., 47 illus. in color.)
Disciplina 006.31
Collana Lecture Notes in Artificial Intelligence
Soggetto topico Machine learning
Application software
Optical data processing
Machine Learning
Computer Applications
Image Processing and Computer Vision
Soggetto non controllato Computer science
Machine learning
Application software
Optical data processing
ISBN 3-030-38081-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Learning from our Movements - The Mobility Data Analytics Era -- Uncovering hidden concepts from AIS data: A network abstraction of maritime traffic for anomaly detection -- Nowcasting Unemployment Rates with Smartphone GPS data -- Online long-term trajectory prediction based on mined route patterns -- EvolvingClusters: Online Discovery of Group Patterns in Enriched Maritime Data -- Prospective Data Model and Distributed Query Processing for Mobile Sensing Data Streams -- Predicting Fishing Effort and Catch Using Semantic Trajectories and Machine Learning -- A Neighborhood-augmented LSTM Model for Taxi-Passenger Demand Prediction -- Multi-Channel Convolutional Neural Networks for Handling Multi-Dimensional Semantic Trajectories and Predicting Future Semantic Locations.
Record Nr. UNINA-9910372743203321
Tserpes Konstantinos  
Springer Nature, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Multiple-Aspect Analysis of Semantic Trajectories [[electronic resource] ] : First International Workshop, MASTER 2019, Held in Conjunction with ECML-PKDD 2019, Würzburg, Germany, September 16, 2019, Proceedings / / edited by Konstantinos Tserpes, Chiara Renso, Stan Matwin
Multiple-Aspect Analysis of Semantic Trajectories [[electronic resource] ] : First International Workshop, MASTER 2019, Held in Conjunction with ECML-PKDD 2019, Würzburg, Germany, September 16, 2019, Proceedings / / edited by Konstantinos Tserpes, Chiara Renso, Stan Matwin
Autore Tserpes Konstantinos
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Springer Nature, 2020
Descrizione fisica 1 online resource (IX, 133 p. 93 illus., 47 illus. in color.)
Disciplina 006.31
Collana Lecture Notes in Artificial Intelligence
Soggetto topico Machine learning
Application software
Optical data processing
Machine Learning
Computer Applications
Image Processing and Computer Vision
Soggetto non controllato Computer science
Machine learning
Application software
Optical data processing
ISBN 3-030-38081-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Learning from our Movements - The Mobility Data Analytics Era -- Uncovering hidden concepts from AIS data: A network abstraction of maritime traffic for anomaly detection -- Nowcasting Unemployment Rates with Smartphone GPS data -- Online long-term trajectory prediction based on mined route patterns -- EvolvingClusters: Online Discovery of Group Patterns in Enriched Maritime Data -- Prospective Data Model and Distributed Query Processing for Mobile Sensing Data Streams -- Predicting Fishing Effort and Catch Using Semantic Trajectories and Machine Learning -- A Neighborhood-augmented LSTM Model for Taxi-Passenger Demand Prediction -- Multi-Channel Convolutional Neural Networks for Handling Multi-Dimensional Semantic Trajectories and Predicting Future Semantic Locations.
Record Nr. UNISA-996418318303316
Tserpes Konstantinos  
Springer Nature, 2020
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui