Multiple-Aspect Analysis of Semantic Trajectories [[electronic resource] ] : First International Workshop, MASTER 2019, Held in Conjunction with ECML-PKDD 2019, Würzburg, Germany, September 16, 2019, Proceedings / / edited by Konstantinos Tserpes, Chiara Renso, Stan Matwin |
Autore | Tserpes Konstantinos |
Edizione | [1st ed. 2020.] |
Pubbl/distr/stampa | Springer Nature, 2020 |
Descrizione fisica | 1 online resource (IX, 133 p. 93 illus., 47 illus. in color.) |
Disciplina | 006.31 |
Collana | Lecture Notes in Artificial Intelligence |
Soggetto topico |
Machine learning
Application software Optical data processing Machine Learning Computer Applications Image Processing and Computer Vision |
Soggetto non controllato |
Computer science
Machine learning Application software Optical data processing |
ISBN | 3-030-38081-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Learning from our Movements - The Mobility Data Analytics Era -- Uncovering hidden concepts from AIS data: A network abstraction of maritime traffic for anomaly detection -- Nowcasting Unemployment Rates with Smartphone GPS data -- Online long-term trajectory prediction based on mined route patterns -- EvolvingClusters: Online Discovery of Group Patterns in Enriched Maritime Data -- Prospective Data Model and Distributed Query Processing for Mobile Sensing Data Streams -- Predicting Fishing Effort and Catch Using Semantic Trajectories and Machine Learning -- A Neighborhood-augmented LSTM Model for Taxi-Passenger Demand Prediction -- Multi-Channel Convolutional Neural Networks for Handling Multi-Dimensional Semantic Trajectories and Predicting Future Semantic Locations. |
Record Nr. | UNINA-9910372743203321 |
Tserpes Konstantinos | ||
Springer Nature, 2020 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Multiple-Aspect Analysis of Semantic Trajectories [[electronic resource] ] : First International Workshop, MASTER 2019, Held in Conjunction with ECML-PKDD 2019, Würzburg, Germany, September 16, 2019, Proceedings / / edited by Konstantinos Tserpes, Chiara Renso, Stan Matwin |
Autore | Tserpes Konstantinos |
Edizione | [1st ed. 2020.] |
Pubbl/distr/stampa | Springer Nature, 2020 |
Descrizione fisica | 1 online resource (IX, 133 p. 93 illus., 47 illus. in color.) |
Disciplina | 006.31 |
Collana | Lecture Notes in Artificial Intelligence |
Soggetto topico |
Machine learning
Application software Optical data processing Machine Learning Computer Applications Image Processing and Computer Vision |
Soggetto non controllato |
Computer science
Machine learning Application software Optical data processing |
ISBN | 3-030-38081-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Learning from our Movements - The Mobility Data Analytics Era -- Uncovering hidden concepts from AIS data: A network abstraction of maritime traffic for anomaly detection -- Nowcasting Unemployment Rates with Smartphone GPS data -- Online long-term trajectory prediction based on mined route patterns -- EvolvingClusters: Online Discovery of Group Patterns in Enriched Maritime Data -- Prospective Data Model and Distributed Query Processing for Mobile Sensing Data Streams -- Predicting Fishing Effort and Catch Using Semantic Trajectories and Machine Learning -- A Neighborhood-augmented LSTM Model for Taxi-Passenger Demand Prediction -- Multi-Channel Convolutional Neural Networks for Handling Multi-Dimensional Semantic Trajectories and Predicting Future Semantic Locations. |
Record Nr. | UNISA-996418318303316 |
Tserpes Konstantinos | ||
Springer Nature, 2020 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|