top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Biochar Applications for Wastewater Treatment
Biochar Applications for Wastewater Treatment
Autore Tsang Daniel C. W
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2023
Descrizione fisica 1 online resource (338 pages)
Altri autori (Persone) SunYuqing
ISBN 1-119-76440-8
1-119-76438-6
1-119-76439-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Biochar Applications for Wastewater Treatment -- Contents -- Editors Biography -- List of Contributors -- Preface -- 1 Engineered Biochar -- 1.1 Overview of Biochar Production -- 1.2 Biochar Properties and Characterization -- 1.3 Pre- and Post-Modification of Biochar -- 1.3.1 Physical Modification -- 1.3.2 Chemical Modification -- 1.3.3 Biochar Composites -- 1.4 Sustainability Considerations -- 2 Adsorption of Nutrients -- 2.1 Nutrients in Wastewater -- 2.2 Biochar Performance in Nutrients Removal from Wastewater -- 2.2.1 Removal of Ammonium Using Modified and Pristine Biochars -- 2.2.2 Removal of Nitrate Using Pristine and Modified Biochars -- 2.2.3 Removal of Phosphate Using Pristine and Modified Biochars -- 2.3 Biochar Mechanisms of Nutrients Removal from Wastewater -- 2.3.1 Specific Surface Area -- 2.3.2 Ion Exchange -- 2.3.3 Surface Functional Groups -- 2.3.4 Precipitation -- 2.4 Factors Influencing Biochar Performance in Nutrients Removal -- 2.4.1 Pyrolysis Temperature -- 2.4.2 Metallic Oxides on Biochar -- 2.4.3 Solution pH -- 2.4.4 Contact Time -- 2.4.5 Ambient Temperature -- 2.4.6 Coexisting Ions -- 2.5 Nutrients Desorption from Biochar -- 2.5.1 Ammonium Desorption -- 2.5.2 Nitrate Desorption -- 2.5.3 Phosphorous Desorption -- 2.6 Nutrient-loaded Biochar as Potential Nutrient Suppliers -- 3 Adsorption of Metals/Metalloids -- 3.1 Metals/Metalloids in Wastewater -- 3.2 Mechanisms of Biochar for Adsorption of Metals/Metalloids -- 3.2.1 Physical Adsorption -- 3.2.2 Electrostatic Interaction -- 3.2.3 Ion Exchange -- 3.2.4 Surface Complexation -- 3.2.5 Precipitation -- 3.2.6 Reduction -- 3.3 Modified Biochar for Adsorption of Metals/Metalloids -- 3.3.1 Biochar/Layered Double Hydroxide Composites -- 3.3.2 Magnetic Biochar Composites -- 3.3.3 Biochar-Supported nZVI Composites.
3.3.4 Comparison of Different Modification Methods for Metals/Metalloids -- 3.4 Biochar Recycling after Adsorption of Metals/Metalloids -- 4 Adsorption of PPCPs -- 4.1 PPCPs in Wastewater -- 4.2 Biochar Mechanisms for PPCPs Adsorption -- 4.2.1 π-π Interaction -- 4.2.2 Hydrogen Bonding -- 4.2.3 Electrostatic Interaction -- 4.2.4 Other Mechanisms -- 4.3 Factors Affecting PPCPs Adsorption by Biochar -- 4.3.1 Pyrolysis Temperature -- 4.3.2 Biochar Surface Modification -- 4.3.3 Properties of PPCPs -- 4.3.4 Environmental pH -- 4.3.5 Wastewater Composition -- 5 Stormwater Biofiltration Media -- 5.1 Introduction -- 5.2 Common Pollutants in Stormwater -- 5.3 Biochar for Biofiltration Media -- 5.3.1 Production of Biochar -- 5.3.2 Physicochemical Properties of Biochar -- 5.4 Removal of Pollutants in Biochar-Based Biofiltration Systems -- 5.4.1 Metals/Metalloids -- 5.4.2 Nutrient -- 5.4.3 Organic Chemicals -- 5.5 Microplastic in Urban Runoff -- 5.6 Challenge and Perspective -- 5.7 Conclusion -- 6 Biochar Solution for Anaerobic Digestion -- 6.1 Introduction -- 6.2 Application of BC as an Additive in Anaerobic Digestion -- 6.2.1 pH Buffering -- 6.2.2 Adsorption of Inhibitors -- 6.2.3 Effects on Microbial Growth and Activities -- 6.3 Effects of BC on Digestate Quality -- 6.4 Conclusions and Perspectives -- 7 Biochar-Assisted Anaerobic Ammonium Oxidation -- 7.1 Overview of Anaerobic Ammonium Oxidation -- 7.1.1 Introduction -- 7.1.2 Constraints -- 7.2 Roles of Biochar in Promoting Anammox -- 7.2.1 pH and Inhibitor Buffer -- 7.2.2 Electron Transfer Promotion -- 7.2.3 Microbial Immobilization -- 7.3 Future Perspectives -- 8 Application of Biochar for Sludge Dewatering -- 8.1 Introduction -- 8.2 Preparation of Biochar-Based Sludge Conditioner -- 8.3 Efficacy of Biochar Conditioning on Enhanced Sludge Dewaterability.
8.4 Variations of Sludge Physicochemical Characteristics via Biochar Conditioning -- 8.5 Technical Mechanism and Implementation Prospects -- 9 Effects of Biochar on Sludge Composting -- 9.1 Introduction -- 9.2 Effects of Biochar Addition on Sludge Composting -- 9.2.1 Effects on Compost Parameters Effect on C/N -- 9.2.2 Effects on Heavy Metals -- 9.2.3 Effects on Organic Matters -- 9.2.4 Effects on Gaseous Emissions -- 9.2.5 Effects on Microbial Community and Activities -- 9.2.6 Effects on Quality of Sludge Compost -- 9.3 Future Perspectives -- 9.4 Summary -- 10 Sludge Utilization as Biochar for Nutrient Recovery -- 10.1 Sewage Sludge (SS) Management -- 10.2 Importance of Sludge as a Feedstock for Biochar -- 10.3 Factors Affecting the Properties of SDBC -- 10.3.1 Raw Material -- 10.3.2 Temperature -- 10.3.3 Heating Rates -- 10.3.4 Retention Time -- 10.4 Nutrients in SDBC -- 10.4.1 Nitrogen (N) -- 10.4.2 Phosphorus (P) -- 10.4.3 Potassium (K) -- 10.5 SDBC for Soil Amendment and Nutrient Utilization -- 10.6 Current Challenges for SDBC -- 10.7 Conclusions -- 11 Biochar for Electrochemical Treatment of Wastewater -- 11.1 Introduction -- 11.2 Different Electrochemical Behavior of Biochar -- 11.2.1 Electron Exchange -- 11.2.2 Electron Donor or Acceptor -- 11.2.3 Electrosorption Capacity -- 11.3 Preparation of Biochar Electrode Materials -- 11.3.1 Carbonization -- 11.3.2 Activation -- 11.3.3 Template -- 11.3.4 Composite Materials -- 11.4 Application in Electrochemical Wastewater Treatment -- 11.4.1 Electrochemical Oxidation -- 11.4.2 Electrochemical Deposition -- 11.4.3 Electro-adsorption -- 11.4.4 Electrochemical Disinfection -- 11.5 Future Perspectives -- 11.6 Summary -- 12 Peroxide-Based Biochar-Assisted Advanced Oxidation -- 12.1 Introduction -- 12.2 Biochar-Based Catalysts -- 12.2.1 Pristine Biochar -- 12.2.2 Redox Metal-Loaded Biochar.
12.2.3 Heteroatom-Doped Biochar -- 12.3 Peroxide-Based Advanced Oxidation -- 12.3.1 Fenton-Like System -- 12.3.2 Persulfate Activation System -- 12.3.3 Photocatalytic System -- 12.4 Conclusion and Future Perspectives -- 13 Persulfate-Based Biochar-Assisted Advanced Oxidation -- 13.1 Introduction -- 13.2 Activation Pathway and Reaction Mechanism of Persulfate by Biochar -- 13.2.1 Distinction between Different Pathways -- 13.2.2 Properties Necessitating the Generation of Radicals with PS -- 13.2.3 Nonradical Degradation with Biochar -- 13.2.4 Modifying Biochar for Enhanced Properties Related to the Degradation Process -- 13.3 Metal-Biochar Composites in Persulfate Activation System -- 13.3.1 Iron-Biochar -- 13.3.2 Copper-biochar -- 13.3.3 Cobalt Biochar -- 13.3.4 Biochar of Other Metal and Mixed Metal -- 13.4 Heteroatom-Doped Biochar for PS Activation -- 13.4.1 Nitrogen-doped Biochar -- 13.4.2 Sulfur-Doped Biochar -- 13.5 Conclusion and Perspectives -- 14 Biochar-Enhanced Ozonation for Sewage Treatment -- 14.1 Introduction -- 14.2 Preparation of Biochar-Based Catalyst for Ozonation -- 14.3 Efficacy of Biochar-Catalytic Ozonation on Sewage Treatment -- 14.4 Effects of Process Conditions on Biochar-Enhanced Ozonation Sewage Treatment -- 14.5 Technical Mechanism and Implementation Prospects -- 15 Biochar-Supported Odor Control -- 15.1 Causes and Treatment of Odor -- 15.2 Odor Pollutants -- 15.3 Properties of Biochar for the Removal of Odor Pollutants -- 15.3.1 Surface Area and Total Pore Volume -- 15.3.2 Pore Size Distribution -- 15.3.3 Chemical Functional Group -- 15.3.4 Noncarbonized Organic Matter -- 15.3.5 Mineral constituents -- 15.4 Application of Biochar in Odor Control -- 15.4.1 Biochar as Adsorbent -- 15.4.2 Biochar as Additives -- 15.5 Conclusion and Perspective -- 16 Fate, Transport, and Impact of Biochar in the Environment.
16.1 Transport Mechanism of Biochar in the Environment -- 16.2 Stability of Biochar -- 16.2.1 Physical Degradation of Biochar -- 16.2.2 Chemical Decomposition of Biochar -- 16.2.3 Microbial Decomposition of Biochar -- 16.3 Contaminants in Biochar and the Environmental Impact -- 16.3.1 Polycyclic Aromatic Hydrocarbons (PAHs) -- 16.3.2 Heavy Metals (HMs) -- 16.3.3 Persistent Free Radicals (PFRs) -- 16.3.4 Dioxins -- 16.3.5 Metal Cyanide (MCN) -- 16.3.6 Volatile Organic Compounds (VOCs) -- 17 Environmental and Economic Evaluation of Biochar Application in Wastewater and Sludge Treatment -- 17.1 Introduction -- 17.2 Environmental Evaluation -- 17.2.1 LCA Insights into Biochar Production and Applications -- 17.2.2 Main LCA Literature Studies of Biochar Applications in Wastewater and Sludge Treatments -- 17.3 Technical, Economic, and Sustainability Considerations -- 17.4 Future Trends -- 17.5 Conclusions -- Index.
Record Nr. UNINA-9910831070803321
Tsang Daniel C. W  
Newark : , : John Wiley & Sons, Incorporated, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Biochar Applications for Wastewater Treatment
Biochar Applications for Wastewater Treatment
Autore Tsang Daniel C. W
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2023
Descrizione fisica 1 online resource (338 pages)
Altri autori (Persone) SunYuqing
ISBN 1-119-76440-8
1-119-76438-6
1-119-76439-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Biochar Applications for Wastewater Treatment -- Contents -- Editors Biography -- List of Contributors -- Preface -- 1 Engineered Biochar -- 1.1 Overview of Biochar Production -- 1.2 Biochar Properties and Characterization -- 1.3 Pre- and Post-Modification of Biochar -- 1.3.1 Physical Modification -- 1.3.2 Chemical Modification -- 1.3.3 Biochar Composites -- 1.4 Sustainability Considerations -- 2 Adsorption of Nutrients -- 2.1 Nutrients in Wastewater -- 2.2 Biochar Performance in Nutrients Removal from Wastewater -- 2.2.1 Removal of Ammonium Using Modified and Pristine Biochars -- 2.2.2 Removal of Nitrate Using Pristine and Modified Biochars -- 2.2.3 Removal of Phosphate Using Pristine and Modified Biochars -- 2.3 Biochar Mechanisms of Nutrients Removal from Wastewater -- 2.3.1 Specific Surface Area -- 2.3.2 Ion Exchange -- 2.3.3 Surface Functional Groups -- 2.3.4 Precipitation -- 2.4 Factors Influencing Biochar Performance in Nutrients Removal -- 2.4.1 Pyrolysis Temperature -- 2.4.2 Metallic Oxides on Biochar -- 2.4.3 Solution pH -- 2.4.4 Contact Time -- 2.4.5 Ambient Temperature -- 2.4.6 Coexisting Ions -- 2.5 Nutrients Desorption from Biochar -- 2.5.1 Ammonium Desorption -- 2.5.2 Nitrate Desorption -- 2.5.3 Phosphorous Desorption -- 2.6 Nutrient-loaded Biochar as Potential Nutrient Suppliers -- 3 Adsorption of Metals/Metalloids -- 3.1 Metals/Metalloids in Wastewater -- 3.2 Mechanisms of Biochar for Adsorption of Metals/Metalloids -- 3.2.1 Physical Adsorption -- 3.2.2 Electrostatic Interaction -- 3.2.3 Ion Exchange -- 3.2.4 Surface Complexation -- 3.2.5 Precipitation -- 3.2.6 Reduction -- 3.3 Modified Biochar for Adsorption of Metals/Metalloids -- 3.3.1 Biochar/Layered Double Hydroxide Composites -- 3.3.2 Magnetic Biochar Composites -- 3.3.3 Biochar-Supported nZVI Composites.
3.3.4 Comparison of Different Modification Methods for Metals/Metalloids -- 3.4 Biochar Recycling after Adsorption of Metals/Metalloids -- 4 Adsorption of PPCPs -- 4.1 PPCPs in Wastewater -- 4.2 Biochar Mechanisms for PPCPs Adsorption -- 4.2.1 π-π Interaction -- 4.2.2 Hydrogen Bonding -- 4.2.3 Electrostatic Interaction -- 4.2.4 Other Mechanisms -- 4.3 Factors Affecting PPCPs Adsorption by Biochar -- 4.3.1 Pyrolysis Temperature -- 4.3.2 Biochar Surface Modification -- 4.3.3 Properties of PPCPs -- 4.3.4 Environmental pH -- 4.3.5 Wastewater Composition -- 5 Stormwater Biofiltration Media -- 5.1 Introduction -- 5.2 Common Pollutants in Stormwater -- 5.3 Biochar for Biofiltration Media -- 5.3.1 Production of Biochar -- 5.3.2 Physicochemical Properties of Biochar -- 5.4 Removal of Pollutants in Biochar-Based Biofiltration Systems -- 5.4.1 Metals/Metalloids -- 5.4.2 Nutrient -- 5.4.3 Organic Chemicals -- 5.5 Microplastic in Urban Runoff -- 5.6 Challenge and Perspective -- 5.7 Conclusion -- 6 Biochar Solution for Anaerobic Digestion -- 6.1 Introduction -- 6.2 Application of BC as an Additive in Anaerobic Digestion -- 6.2.1 pH Buffering -- 6.2.2 Adsorption of Inhibitors -- 6.2.3 Effects on Microbial Growth and Activities -- 6.3 Effects of BC on Digestate Quality -- 6.4 Conclusions and Perspectives -- 7 Biochar-Assisted Anaerobic Ammonium Oxidation -- 7.1 Overview of Anaerobic Ammonium Oxidation -- 7.1.1 Introduction -- 7.1.2 Constraints -- 7.2 Roles of Biochar in Promoting Anammox -- 7.2.1 pH and Inhibitor Buffer -- 7.2.2 Electron Transfer Promotion -- 7.2.3 Microbial Immobilization -- 7.3 Future Perspectives -- 8 Application of Biochar for Sludge Dewatering -- 8.1 Introduction -- 8.2 Preparation of Biochar-Based Sludge Conditioner -- 8.3 Efficacy of Biochar Conditioning on Enhanced Sludge Dewaterability.
8.4 Variations of Sludge Physicochemical Characteristics via Biochar Conditioning -- 8.5 Technical Mechanism and Implementation Prospects -- 9 Effects of Biochar on Sludge Composting -- 9.1 Introduction -- 9.2 Effects of Biochar Addition on Sludge Composting -- 9.2.1 Effects on Compost Parameters Effect on C/N -- 9.2.2 Effects on Heavy Metals -- 9.2.3 Effects on Organic Matters -- 9.2.4 Effects on Gaseous Emissions -- 9.2.5 Effects on Microbial Community and Activities -- 9.2.6 Effects on Quality of Sludge Compost -- 9.3 Future Perspectives -- 9.4 Summary -- 10 Sludge Utilization as Biochar for Nutrient Recovery -- 10.1 Sewage Sludge (SS) Management -- 10.2 Importance of Sludge as a Feedstock for Biochar -- 10.3 Factors Affecting the Properties of SDBC -- 10.3.1 Raw Material -- 10.3.2 Temperature -- 10.3.3 Heating Rates -- 10.3.4 Retention Time -- 10.4 Nutrients in SDBC -- 10.4.1 Nitrogen (N) -- 10.4.2 Phosphorus (P) -- 10.4.3 Potassium (K) -- 10.5 SDBC for Soil Amendment and Nutrient Utilization -- 10.6 Current Challenges for SDBC -- 10.7 Conclusions -- 11 Biochar for Electrochemical Treatment of Wastewater -- 11.1 Introduction -- 11.2 Different Electrochemical Behavior of Biochar -- 11.2.1 Electron Exchange -- 11.2.2 Electron Donor or Acceptor -- 11.2.3 Electrosorption Capacity -- 11.3 Preparation of Biochar Electrode Materials -- 11.3.1 Carbonization -- 11.3.2 Activation -- 11.3.3 Template -- 11.3.4 Composite Materials -- 11.4 Application in Electrochemical Wastewater Treatment -- 11.4.1 Electrochemical Oxidation -- 11.4.2 Electrochemical Deposition -- 11.4.3 Electro-adsorption -- 11.4.4 Electrochemical Disinfection -- 11.5 Future Perspectives -- 11.6 Summary -- 12 Peroxide-Based Biochar-Assisted Advanced Oxidation -- 12.1 Introduction -- 12.2 Biochar-Based Catalysts -- 12.2.1 Pristine Biochar -- 12.2.2 Redox Metal-Loaded Biochar.
12.2.3 Heteroatom-Doped Biochar -- 12.3 Peroxide-Based Advanced Oxidation -- 12.3.1 Fenton-Like System -- 12.3.2 Persulfate Activation System -- 12.3.3 Photocatalytic System -- 12.4 Conclusion and Future Perspectives -- 13 Persulfate-Based Biochar-Assisted Advanced Oxidation -- 13.1 Introduction -- 13.2 Activation Pathway and Reaction Mechanism of Persulfate by Biochar -- 13.2.1 Distinction between Different Pathways -- 13.2.2 Properties Necessitating the Generation of Radicals with PS -- 13.2.3 Nonradical Degradation with Biochar -- 13.2.4 Modifying Biochar for Enhanced Properties Related to the Degradation Process -- 13.3 Metal-Biochar Composites in Persulfate Activation System -- 13.3.1 Iron-Biochar -- 13.3.2 Copper-biochar -- 13.3.3 Cobalt Biochar -- 13.3.4 Biochar of Other Metal and Mixed Metal -- 13.4 Heteroatom-Doped Biochar for PS Activation -- 13.4.1 Nitrogen-doped Biochar -- 13.4.2 Sulfur-Doped Biochar -- 13.5 Conclusion and Perspectives -- 14 Biochar-Enhanced Ozonation for Sewage Treatment -- 14.1 Introduction -- 14.2 Preparation of Biochar-Based Catalyst for Ozonation -- 14.3 Efficacy of Biochar-Catalytic Ozonation on Sewage Treatment -- 14.4 Effects of Process Conditions on Biochar-Enhanced Ozonation Sewage Treatment -- 14.5 Technical Mechanism and Implementation Prospects -- 15 Biochar-Supported Odor Control -- 15.1 Causes and Treatment of Odor -- 15.2 Odor Pollutants -- 15.3 Properties of Biochar for the Removal of Odor Pollutants -- 15.3.1 Surface Area and Total Pore Volume -- 15.3.2 Pore Size Distribution -- 15.3.3 Chemical Functional Group -- 15.3.4 Noncarbonized Organic Matter -- 15.3.5 Mineral constituents -- 15.4 Application of Biochar in Odor Control -- 15.4.1 Biochar as Adsorbent -- 15.4.2 Biochar as Additives -- 15.5 Conclusion and Perspective -- 16 Fate, Transport, and Impact of Biochar in the Environment.
16.1 Transport Mechanism of Biochar in the Environment -- 16.2 Stability of Biochar -- 16.2.1 Physical Degradation of Biochar -- 16.2.2 Chemical Decomposition of Biochar -- 16.2.3 Microbial Decomposition of Biochar -- 16.3 Contaminants in Biochar and the Environmental Impact -- 16.3.1 Polycyclic Aromatic Hydrocarbons (PAHs) -- 16.3.2 Heavy Metals (HMs) -- 16.3.3 Persistent Free Radicals (PFRs) -- 16.3.4 Dioxins -- 16.3.5 Metal Cyanide (MCN) -- 16.3.6 Volatile Organic Compounds (VOCs) -- 17 Environmental and Economic Evaluation of Biochar Application in Wastewater and Sludge Treatment -- 17.1 Introduction -- 17.2 Environmental Evaluation -- 17.2.1 LCA Insights into Biochar Production and Applications -- 17.2.2 Main LCA Literature Studies of Biochar Applications in Wastewater and Sludge Treatments -- 17.3 Technical, Economic, and Sustainability Considerations -- 17.4 Future Trends -- 17.5 Conclusions -- Index.
Record Nr. UNINA-9910877865503321
Tsang Daniel C. W  
Newark : , : John Wiley & Sons, Incorporated, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui