Direct numerical simulations of gas-liquid multiphase flows / / by Grétar Tryggvason, Ruben Scardovelli, Stéphane Zaleski [[electronic resource]] |
Autore | Tryggvason Gretar |
Pubbl/distr/stampa | Cambridge : , : Cambridge University Press, , 2011 |
Descrizione fisica | 1 online resource (x, 324 pages) : digital, PDF file(s) |
Disciplina | 532.56 |
Soggetto topico |
Multiphase flow - Mathematical models
Gas-liquid interfaces |
ISBN |
1-107-21807-1
1-283-34214-6 1-139-15978-X 9786613342140 1-139-16078-8 1-139-15522-9 1-139-15873-2 1-139-15697-7 0-511-97526-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover; DIRECT NUMERICAL SIMULATIONS OF GAS-LIQUID MULTIPHASE FLOWS; Title; Copyright; Contents; Preface; 1 Introduction; 1.1 Examples of multiphase flows; 1.2 Computational modeling; 1.2.1 Simple flows (Re = 0 and Re = 8); 1.2.2 Finite Reynolds number flows; 1.3 Looking ahead; 2 Fluid mechanics with interfaces; 2.1 General principles; 2.2 Basic equations; 2.2.1 Mass conservation; 2.2.2 Momentum conservation; 2.2.3 Energy conservation; 2.2.4 Incompressible flow; 2.2.5 Boundary conditions; 2.3 Interfaces: description and definitions; 2.4 Fluid mechanics with interfaces
2.4.1 Mass conservation and velocity conditions2.4.2 Surface tension; 2.4.3 Momentum conservation with interfaces; 2.4.4 Free-surface flow; 2.5 Fluid mechanics with interfaces: the one-fluid formulation; 2.6 Nondimensional numbers; 2.7 Thin films, intermolecular forces, and contact lines; 2.7.1 Disjoining pressure and forces between interfaces; 2.7.2 Contact line statics and dynamics; 2.8 Notes; 2.8.1 Fluid and interface mechanics; 2.8.2 Thin films and contact lines; 3 Numerical solutions of the Navier-Stokes equations; 3.1 Time integration; 3.2 Spatial discretization 3.3 Discretization of the advection terms3.4 The viscous terms; 3.5 The pressure equation; 3.6 Velocity boundary conditions; 3.7 Outflow boundary conditions; 3.8 Adaptive mesh refinement; 3.9 Summary; 3.10 Postscript: conservative versus non-conservative form; 4Advecting a fluid interface; 4.1 Notations; 4.2 Advecting the color function; 4.3 The volume-of-fluid (VOF) method; 4.4 Front tracking; 4.5 The level-set method; 4.6 Phase-field methods; 4.7 The CIP method; 4.8 Summary; 5 The volume-of-fluid method; 5.1 Basic properties; 5.2 Interface reconstruction 5.2.1 Convergence order of a reconstruction method5.2.2 Evaluation of the interface unit normal; 5.2.3 Determination of a; 5.3 Tests of reconstruction methods; 5.3.1 Errors measurement and convergence rate; 5.3.2 Reconstruction accuracy tests; 5.4 Interface advection; 5.4.1 Geometrical one-dimensional linear-mapping method; 5.4.2 Related one-dimensional advection methods; 5.4.3 Unsplit methods; 5.5 Tests of reconstruction and advection methods; 5.5.1 Translation test; 5.5.2 Vortex-in-a-box test; 5.6 Hybrid methods; 6 Advecting marker points: front tracking; 6.1 The structure of the front 6.1.1 Structured two-dimensional fronts6.1.2 Unstructured fronts; 6.2 Restructuring the fronts; 6.3 The front-grid communications; 6.3.1 Locating the front on the fixed grid; 6.3.2 Interpolation and smoothing; 6.4 Advection of the front; 6.5 Constructing the marker function; 6.5.1 Constructing the marker function from its gradient; 6.5.2 Construction of the volume fraction from the front location; 6.6 Changes in the front topology; 6.7 Notes; 7 Surface tension; 7.1 Computing surface tension from marker functions; 7.1.1 Continuous surface force method; 7.1.2 Continuous surface stress method 7.1.3 Direct addition and elementary smoothing in the VOF method |
Record Nr. | UNINA-9910457511903321 |
Tryggvason Gretar | ||
Cambridge : , : Cambridge University Press, , 2011 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Direct numerical simulations of gas-liquid multiphase flows / / by Grétar Tryggvason, Ruben Scardovelli, Stéphane Zaleski [[electronic resource]] |
Autore | Tryggvason Gretar |
Pubbl/distr/stampa | Cambridge : , : Cambridge University Press, , 2011 |
Descrizione fisica | 1 online resource (x, 324 pages) : digital, PDF file(s) |
Disciplina | 532.56 |
Soggetto topico |
Multiphase flow - Mathematical models
Gas-liquid interfaces |
ISBN |
1-107-21807-1
1-283-34214-6 1-139-15978-X 9786613342140 1-139-16078-8 1-139-15522-9 1-139-15873-2 1-139-15697-7 0-511-97526-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover; DIRECT NUMERICAL SIMULATIONS OF GAS-LIQUID MULTIPHASE FLOWS; Title; Copyright; Contents; Preface; 1 Introduction; 1.1 Examples of multiphase flows; 1.2 Computational modeling; 1.2.1 Simple flows (Re = 0 and Re = 8); 1.2.2 Finite Reynolds number flows; 1.3 Looking ahead; 2 Fluid mechanics with interfaces; 2.1 General principles; 2.2 Basic equations; 2.2.1 Mass conservation; 2.2.2 Momentum conservation; 2.2.3 Energy conservation; 2.2.4 Incompressible flow; 2.2.5 Boundary conditions; 2.3 Interfaces: description and definitions; 2.4 Fluid mechanics with interfaces
2.4.1 Mass conservation and velocity conditions2.4.2 Surface tension; 2.4.3 Momentum conservation with interfaces; 2.4.4 Free-surface flow; 2.5 Fluid mechanics with interfaces: the one-fluid formulation; 2.6 Nondimensional numbers; 2.7 Thin films, intermolecular forces, and contact lines; 2.7.1 Disjoining pressure and forces between interfaces; 2.7.2 Contact line statics and dynamics; 2.8 Notes; 2.8.1 Fluid and interface mechanics; 2.8.2 Thin films and contact lines; 3 Numerical solutions of the Navier-Stokes equations; 3.1 Time integration; 3.2 Spatial discretization 3.3 Discretization of the advection terms3.4 The viscous terms; 3.5 The pressure equation; 3.6 Velocity boundary conditions; 3.7 Outflow boundary conditions; 3.8 Adaptive mesh refinement; 3.9 Summary; 3.10 Postscript: conservative versus non-conservative form; 4Advecting a fluid interface; 4.1 Notations; 4.2 Advecting the color function; 4.3 The volume-of-fluid (VOF) method; 4.4 Front tracking; 4.5 The level-set method; 4.6 Phase-field methods; 4.7 The CIP method; 4.8 Summary; 5 The volume-of-fluid method; 5.1 Basic properties; 5.2 Interface reconstruction 5.2.1 Convergence order of a reconstruction method5.2.2 Evaluation of the interface unit normal; 5.2.3 Determination of a; 5.3 Tests of reconstruction methods; 5.3.1 Errors measurement and convergence rate; 5.3.2 Reconstruction accuracy tests; 5.4 Interface advection; 5.4.1 Geometrical one-dimensional linear-mapping method; 5.4.2 Related one-dimensional advection methods; 5.4.3 Unsplit methods; 5.5 Tests of reconstruction and advection methods; 5.5.1 Translation test; 5.5.2 Vortex-in-a-box test; 5.6 Hybrid methods; 6 Advecting marker points: front tracking; 6.1 The structure of the front 6.1.1 Structured two-dimensional fronts6.1.2 Unstructured fronts; 6.2 Restructuring the fronts; 6.3 The front-grid communications; 6.3.1 Locating the front on the fixed grid; 6.3.2 Interpolation and smoothing; 6.4 Advection of the front; 6.5 Constructing the marker function; 6.5.1 Constructing the marker function from its gradient; 6.5.2 Construction of the volume fraction from the front location; 6.6 Changes in the front topology; 6.7 Notes; 7 Surface tension; 7.1 Computing surface tension from marker functions; 7.1.1 Continuous surface force method; 7.1.2 Continuous surface stress method 7.1.3 Direct addition and elementary smoothing in the VOF method |
Record Nr. | UNINA-9910781866203321 |
Tryggvason Gretar | ||
Cambridge : , : Cambridge University Press, , 2011 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Direct numerical simulations of gas-liquid multiphase flows / / by Grétar Tryggvason, Ruben Scardovelli, Stéphane Zaleski [[electronic resource]] |
Autore | Tryggvason Gretar |
Pubbl/distr/stampa | Cambridge : , : Cambridge University Press, , 2011 |
Descrizione fisica | 1 online resource (x, 324 pages) : digital, PDF file(s) |
Disciplina | 532.56 |
Soggetto topico |
Multiphase flow - Mathematical models
Gas-liquid interfaces |
ISBN |
1-107-21807-1
1-283-34214-6 1-139-15978-X 9786613342140 1-139-16078-8 1-139-15522-9 1-139-15873-2 1-139-15697-7 0-511-97526-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover; DIRECT NUMERICAL SIMULATIONS OF GAS-LIQUID MULTIPHASE FLOWS; Title; Copyright; Contents; Preface; 1 Introduction; 1.1 Examples of multiphase flows; 1.2 Computational modeling; 1.2.1 Simple flows (Re = 0 and Re = 8); 1.2.2 Finite Reynolds number flows; 1.3 Looking ahead; 2 Fluid mechanics with interfaces; 2.1 General principles; 2.2 Basic equations; 2.2.1 Mass conservation; 2.2.2 Momentum conservation; 2.2.3 Energy conservation; 2.2.4 Incompressible flow; 2.2.5 Boundary conditions; 2.3 Interfaces: description and definitions; 2.4 Fluid mechanics with interfaces
2.4.1 Mass conservation and velocity conditions2.4.2 Surface tension; 2.4.3 Momentum conservation with interfaces; 2.4.4 Free-surface flow; 2.5 Fluid mechanics with interfaces: the one-fluid formulation; 2.6 Nondimensional numbers; 2.7 Thin films, intermolecular forces, and contact lines; 2.7.1 Disjoining pressure and forces between interfaces; 2.7.2 Contact line statics and dynamics; 2.8 Notes; 2.8.1 Fluid and interface mechanics; 2.8.2 Thin films and contact lines; 3 Numerical solutions of the Navier-Stokes equations; 3.1 Time integration; 3.2 Spatial discretization 3.3 Discretization of the advection terms3.4 The viscous terms; 3.5 The pressure equation; 3.6 Velocity boundary conditions; 3.7 Outflow boundary conditions; 3.8 Adaptive mesh refinement; 3.9 Summary; 3.10 Postscript: conservative versus non-conservative form; 4Advecting a fluid interface; 4.1 Notations; 4.2 Advecting the color function; 4.3 The volume-of-fluid (VOF) method; 4.4 Front tracking; 4.5 The level-set method; 4.6 Phase-field methods; 4.7 The CIP method; 4.8 Summary; 5 The volume-of-fluid method; 5.1 Basic properties; 5.2 Interface reconstruction 5.2.1 Convergence order of a reconstruction method5.2.2 Evaluation of the interface unit normal; 5.2.3 Determination of a; 5.3 Tests of reconstruction methods; 5.3.1 Errors measurement and convergence rate; 5.3.2 Reconstruction accuracy tests; 5.4 Interface advection; 5.4.1 Geometrical one-dimensional linear-mapping method; 5.4.2 Related one-dimensional advection methods; 5.4.3 Unsplit methods; 5.5 Tests of reconstruction and advection methods; 5.5.1 Translation test; 5.5.2 Vortex-in-a-box test; 5.6 Hybrid methods; 6 Advecting marker points: front tracking; 6.1 The structure of the front 6.1.1 Structured two-dimensional fronts6.1.2 Unstructured fronts; 6.2 Restructuring the fronts; 6.3 The front-grid communications; 6.3.1 Locating the front on the fixed grid; 6.3.2 Interpolation and smoothing; 6.4 Advection of the front; 6.5 Constructing the marker function; 6.5.1 Constructing the marker function from its gradient; 6.5.2 Construction of the volume fraction from the front location; 6.6 Changes in the front topology; 6.7 Notes; 7 Surface tension; 7.1 Computing surface tension from marker functions; 7.1.1 Continuous surface force method; 7.1.2 Continuous surface stress method 7.1.3 Direct addition and elementary smoothing in the VOF method |
Record Nr. | UNINA-9910818684903321 |
Tryggvason Gretar | ||
Cambridge : , : Cambridge University Press, , 2011 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|