Advancement in the Pathophysiology of Cerebral Stroke / / edited by Ranjana Patnaik, Amit Kumar Tripathi, Ashish Dwivedi |
Edizione | [1st ed. 2019.] |
Pubbl/distr/stampa | Singapore : , : Springer Singapore : , : Imprint : Springer, , 2019 |
Descrizione fisica | 1 online resource (VIII, 189 p. 23 illus., 12 illus. in color.) |
Disciplina | 612 |
Soggetto topico |
Human physiology
Neurosciences Oxidative stress Radiology Stem cells Nanotechnology Human Physiology Oxidative Stress Diagnostic Radiology Stem Cells |
ISBN |
981-13-1453-5
981-13-1452-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Chapter 1. Cerebral stroke: An Introduction -- Chapter 2. Inflammation, oxidative stress, and neurodegeneration -- Chapter 3. Stroke induced blood brain barrier damage -- Chapter 4. Regulation of calcium ions in ischemic neuronal cell -- Chapter 5. Ischemic stroke induced endoplasmic reticulum stress -- Chapter 6. The role of autophagy in ischemic stroke: friend or foe?- Chapter 7. Critical role of mitochondrial autophagy in cerebral stroke -- Chapter 8. Application of neuroimaging in the identification of the pinpoint location of blockage -- Chapter 9. Emerging role of the electromagnetic field in stroke -- Chapter 10. Stem cell therapies for stroke -- Chapter 11. MicroRNA: Significance to stroke diagnosis, prognosis, and therapy -- Chapter 12. Therapeutic Aspects of Nanomedicines in Stroke Treatment -- Chapter 13. Neuroprotective potential of small molecule phytochemicals against stroke -- Chapter 14. Role of UV irradiation on neuroprotective potential of phytochemicals -- Chapter 15. Post-stroke treatment strategies, management, and rehabilitation. |
Record Nr. | UNINA-9910349465703321 |
Singapore : , : Springer Singapore : , : Imprint : Springer, , 2019 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Gut microbiome in neurological health and disorders / / Amit Kumar Tripathi, Malini Kotak, editors |
Pubbl/distr/stampa | Singapore : , : Springer, , [2022] |
Descrizione fisica | 1 online resource (315 pages) |
Disciplina | 612.32 |
Collana | Nutritional Neurosciences |
Soggetto topico | Gastrointestinal system - Microbiology |
ISBN | 981-19-4530-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Contents -- About the Editors -- Chapter 1: Gut Microbiome Brain Axis: An Introduction -- 1.1 Introduction -- 1.2 Gut Microbiota and Brain -- 1.3 Gut Microbiota and Immune System -- 1.4 Gut Microbiota and Aging -- 1.5 Gut Microbiota and Diseases -- 1.6 Gut Microbiota and Fatty Acids -- 1.7 Gut Microbiota and Pre/Probiotics -- References -- Chapter 2: Cross Talk Between Gut Microbiota and Host Immune Cells -- 2.1 Introduction -- 2.2 Gut Microbiota and Immune System Interaction During Development -- 2.3 Translocation of Microbes in the Gastrointestinal Tract -- 2.4 Communication Between the Host´s Immune Cells and the Intestinal Microbiome -- 2.4.1 Dendritic Cell Relationship with Gut Bacteria -- 2.4.2 IgA and Gut Microbiome -- 2.4.3 Microbiota-Mediated Regulation of Treg Cells, Th17 Cells, and Th1 Cells -- 2.4.4 The Gut Microbiome and Innate Lymphoid Cells -- 2.5 Microbial Metabolite-Mediated Modulation of Host Immunity -- 2.6 Probiotics: An Immune Modulator -- 2.7 Conclusion and Perspectives -- References -- Chapter 3: Microbiota-Gut-Brain Axis and Neurodegenerative Disorder -- 3.1 Introduction -- 3.2 The Gut Microbiome and CNS Connection -- 3.3 Development and Influence of Gut Microbiome -- 3.4 The Gut Microbes and Brain Development -- 3.5 The Gut Microbiota in Neurodegenerative Disorders -- 3.6 A Clinical Connection Between the Gut Microbes and Neurodegenerative Disorders -- 3.7 Routes of Communication -- 3.8 Conclusions and Future Perspectives: A New Hope? -- References -- Chapter 4: Gut Microbiota Regulation of Cerebral Stroke -- 4.1 Introduction -- 4.2 Microbiota Gut-Brain Axis and Its Environmental Axis -- 4.3 Stroke-Induced Gut Dysfunction and Translocation of Gut Microbiota -- 4.4 Western Dietary Pattern and Related Risk Factor for Stroke-Induced Gut Microbiota Alteration.
4.5 Stroke-Induced Gut Inflammatory Immune Response and Brain Infiltration -- 4.6 SCFAs Contributes to Protection Against Cerebral Ischemic Stroke -- 4.7 Stroke Dysbiosis Index Scale for Diagnosis and Prognosis of Stroke Incidence -- 4.8 Regulatory Role of Gut Microbiome in Blood-Brain Barrier Breakage After Stroke -- 4.9 Engineered Microbiota Used for Therapeutic Treatment of Ischemic Stroke -- 4.10 Tools for Regulating Microbiome Gene Expression -- 4.11 Psychobiotics -- 4.12 Neuroprotective Potential of Monobacteriotherapy -- 4.13 Fecal MicroRNA Regulation of Gut Microbiota -- 4.14 Conclusion and Future Directions -- References -- Chapter 5: Aging: Impact of Gut Microbiota -- 5.1 Introduction -- 5.2 Aging Gut Microbiota: Composition -- 5.3 Aging Gut Microbiota: Diet -- 5.4 Aging Gut Microbiota: Pre/Probiotics -- 5.5 Aging Gut Microbiota: Diseases -- 5.6 Conclusion and Future Prospects -- References -- Chapter 6: Gut Microbiome Regulation of Appetite and Role in Neurological Disorders -- 6.1 Introduction -- 6.2 Roles of Intestinal Bacteria -- 6.3 Metabolism -- 6.4 Resistance to Colonization -- 6.5 Appetite Control in Homeostatic Model -- 6.6 Host Energy Homeostasis and Brain -- 6.7 Hedonic Versus Homeostatic Regulation -- 6.8 Bowel Transmission to the Brain -- 6.9 Gut Microbiome Regulates the Appetite -- 6.10 Bacterial Growth Caused by Nutrients -- 6.11 Host Control -- 6.12 Mechanistic Impact of Bacteria from the Gut -- 6.13 The Western Diet Influences the Gut Microbiota -- 6.14 Role of Gut Microbiome in Neurological Disorders -- 6.15 Parkinson´s Disease -- 6.16 Anxiety -- 6.17 Schizophrenia -- 6.18 Autism Spectrum Disorder -- 6.19 Multiple Sclerosis -- 6.20 Alzheimer´s Disease -- 6.21 Epilepsy -- 6.22 Strokes -- 6.23 Conclusion -- References -- Chapter 7: Human Diets, Gut Microbiome, and Neuroinflammation -- 7.1 Introduction. 7.2 Impact of Diet on the Gut Microbiota -- 7.3 Dietary Fat and Carbohydrates -- 7.4 Probiotics and Prebiotics -- 7.5 Micronutrients and Gut Microbiota -- 7.6 Gut Microbiota and Neuroinflammatory Diseases -- 7.7 Alzheimer´s Disease -- 7.8 Autism Spectrum Disorder -- 7.9 Multiple Sclerosis -- 7.10 Conclusion -- References -- Chapter 8: Dietary Fatty Acids, Gut Microbiome, and Gut-Brain Communication: A Current Perspective -- 8.1 Introduction -- 8.2 Role of Long- and Short-Chain Fatty Acids -- 8.3 Alterations in the Gut Ecosystem -- 8.4 Impact of Fatty Acids on Gut Microbiome -- 8.4.1 Effect on Immune System -- 8.4.2 Effect on Gut Ecosystem -- 8.4.3 Effect on Gut Inflammatory Diseases -- 8.4.4 Effect on Obesity -- 8.4.5 Impact on Type 2 Diabetes Mellitus -- 8.5 Dietary Fats-Gut Microbiota: Brain Communication -- 8.6 Conclusion -- References -- Chapter 9: Role of Short-Chain Fatty Acids from Gut Microbiota in Neuroendocrine Pathogenesis Management -- 9.1 Introduction -- 9.2 Occurrence -- 9.3 Chemistry of SCFAs -- 9.4 Role of SCFA and Its Mode of Action in prognosis of diseases -- 9.4.1 Anticancer Activity -- 9.4.2 Gut and Brain -- 9.4.3 Diabetes -- 9.4.4 Inflammatory Regulation -- 9.4.5 Gut Health -- 9.5 Conclusion -- References -- Chapter 10: Potential Role of Probiotics on Gut Microbiota in Neurological Disease -- 10.1 Introduction -- 10.2 Microbiome-Gut-Brain Axis: A Bi-directional Communication System -- 10.2.1 Role and Developmental Role and Mechanism of Action of Gut-Brain Axis -- 10.2.2 Effects of Human Microbiome and Probiotics on ENS, ANS, and CNS -- 10.2.2.1 Effect of Human Microbiome and Probiotics on ENS -- 10.2.2.2 Effects of Human Microbiome and Probiotics on ANS -- 10.2.2.3 Effects of Human Microbiome and Probiotics on Central Nervous System -- 10.3 Neurological Diseases Influenced by Imbalance of Gut-Brain Axis. 10.3.1 Amyotrophic Lateral Sclerosis -- 10.3.2 Epilepsy -- 10.3.3 Autistic Spectrum Disorder -- 10.3.4 Dementia -- 10.3.5 Multiple Sclerosis (MS) -- 10.3.6 Alzheimer´s Disease -- 10.3.7 Anxiety and Depression -- 10.3.8 Schizophrenia -- 10.4 Psychobiotics -- 10.5 Therapeutic Manipulation, Implications, and Future Prospects -- 10.6 Conclusion -- References -- Chapter 11: Reversal of Metabolic Disorder Through the Restoration of Gut Microbiota -- 11.1 Introduction -- 11.2 Role of Phytochemicals in the Gut Restoration -- 11.3 Restoration of Gut Microbiota in AD Via Phytomolecules -- 11.4 Restoration of Gut Microbiota in Diabetes Via Phytomolecules -- 11.5 Restoration of Gut Microbiota in Obesity Via Phytomolecules -- 11.6 Conclusions -- References -- Chapter 12: Gut Microbiome and Diet: Promising Approach for Treatment of Cognitive Impairment -- 12.1 Introduction -- 12.2 Potential of Modified Diet for Treatment of Cognitive Dysfunction -- 12.2.1 High-Fiber Diet -- 12.2.2 Potential of Probiotics for Cognitive Impairment Therapy -- 12.2.3 Potential of Genetically Modified Probiotics (GMP) for Cognitive Impairment Therapy -- 12.3 Fecal Microbiota Transplantation (FMT) as a Cognitive Impairment Therapy -- 12.4 Potential of Physical Training/Exercise for Cognitive Impairment Therapy -- 12.5 Conclusion -- References -- Chapter 13: Nanoplastics, Gut Microbiota, and Neurodegeneration -- 13.1 Introduction -- 13.2 Plastic, Microplastic, and Nanoplastic: Origin and Its Chemical Composition -- 13.2.1 Sources of Nanoplastics -- 13.2.2 Routes of Exposure -- 13.2.3 Additives -- 13.2.4 Impact of Nanoplastic on Gut Microbiota and Its Molecular Mechanism -- 13.2.5 Impact of Additives on Gut Microbiome -- 13.3 Molecular Mechanism -- 13.3.1 Initiation Events (IE) -- 13.3.2 Key Event: Oxidative Stress -- 13.3.3 Activation of Oxidative Stress Pathway. 13.3.4 Impact of MPs/NPs Induced Oxidative Stress on Gut Microbiota -- 13.3.5 Gut Microbiome and Neurodegenerative Disorder -- 13.3.6 Impact of Altered Gut Microbiota Due to Ingested MPs/NPs on Neurodegenerative Diseases -- 13.3.7 Role of Antioxidants -- 13.4 Conclusion -- References -- Chapter 14: Gut Microbiome, COVID-19, and Neurological Impairment -- 14.1 Introduction -- 14.2 Human Diet and COVID-19 -- 14.3 Gut-Lung Axis -- 14.4 Diet and Gut-microbiota in the Population of Developed and Developing Countries -- 14.5 Effect of Microbiota on COVID-19 Cases During Lockdown -- 14.6 Diet Induced Dysbiosis, Inflammation, and Commodity -- 14.7 Personalized Nutritional Invention for Treating COVID-19 -- 14.8 Molecular Mechanism of Microbiota-Virus Interaction -- 14.8.1 Piperine as a Repurposing Molecule for Reversing the COVID-19 Pandemic -- 14.8.2 Interplay Between Gut Microbiome, COVID-19, and Neurological Impairment -- 14.9 Conclusion and Future Perspectives -- References -- Chapter 15: Tools to Study Gut Microbiome -- 15.1 Introduction -- 15.1.1 Gut Microbes Are Highly Abundant -- 15.1.2 The Great Plate Count Anomaly -- 15.1.3 From Microscope to Genoscope -- 15.1.4 Microbiota Establishment in the Gut by Forming Biofilms -- 15.2 Gut Metagenomics Experimental Tool -- 15.2.1 Experimental/Study Design -- 15.2.2 Sample Types, Collection, Handling, and Processing -- 15.2.3 Next-Generation Sequencing -- 15.3 Gut Metagenomics Bioinformatics Tool -- 15.3.1 Preprocessing of Raw Reads -- 15.3.2 Amplicon Analysis -- 15.3.3 Shotgun Analysis -- 15.3.4 Assembly -- 15.3.5 Diversity Measures -- 15.3.6 Challenges -- References -- Chapter 16: Germ-free Mice Technology: Opportunity for Future Research -- 16.1 Introduction -- 16.2 Germ-Free Mice Technology -- 16.2.1 History -- 16.2.2 GF Technology -- 16.2.3 Customized Flora and Control Group for Experiments. 16.3 Why Mice Model?. |
Record Nr. | UNINA-9910586598403321 |
Singapore : , : Springer, , [2022] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Models and techniques in stroke biology / / Amit Kumar Tripathi, Abhishek Kumar Singh, editors |
Pubbl/distr/stampa | Singapore : , : Springer, , [2021] |
Descrizione fisica | 1 online resource (vii, 115 pages) : illustrations |
Disciplina | 574.028 |
Soggetto topico |
Biology - Technique
Malalties cerebrovasculars Models biològics Manuals de laboratori |
Soggetto genere / forma | Llibres electrònics |
ISBN | 981-336-679-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Contents -- About the Editors -- Chapter 1: Rodent Stroke Model Guidelines: An Update -- 1.1 Introduction -- 1.2 The General Guideline for a Rodent Model for Stroke -- 1.3 STAIR Committee, Recommendations, and Guidelines -- 1.4 Intraluminal Model -- 1.5 Different Types of the Occluder and their Success Rate -- 1.6 PLL-Coated Occluders -- 1.7 Flame Blunted Occluders -- 1.8 Silicone-Rubber Coated Occluders -- 1.9 An Optimization Technique for Intraluminal Inserting Occluders -- 1.10 Optimization of Surgical Procedure -- 1.11 The Tamura Method of a Stroke Model -- 1.12 Infarction Area Estimation -- 1.13 Methods for Infarction Visualization -- 1.14 Direct Image of Infarction in Fresh Brain Sections Stained with TTC Solution -- 1.15 Digital Method for Defining the Infarction -- 1.16 Calculation of Infarction Volume -- 1.17 Preparation of Stroke Surgical Procedure -- 1.18 Koizumi´s Suture Method -- 1.19 Longa´s MCAO Method -- 1.20 Neurobehaviour Assessment of Functional Recovery -- 1.21 Assessment of Neurological Functional Outcomes -- 1.21.1 Composite Score -- 1.21.1.1 Bederson Scale and Neurological Deficit Scoring -- 1.21.1.2 Modified Neurological Severity Score -- 1.21.2 Motor Tests -- 1.21.2.1 Cylinder Test -- 1.21.2.2 Ledged Tapered Beam Test -- 1.21.2.3 Pellet Retrieval Task -- 1.21.3 Sensorimotor Test -- 1.21.3.1 Forelimb Flexion -- 1.21.3.2 Forelimb Placing -- 1.21.3.3 Accelerated Rotarod Test -- 1.21.3.4 Adhesive Removal Test -- 1.22 Anesthetics -- 1.23 Monitoring and Maintaining the Core Brain Temperature -- 1.24 Mechanical Ventilation, Blood Gases, Glucose, and Blood Pressure Monitoring -- 1.25 Pilot Study Plan and Implementation of a Preclinical Stroke Trial -- 1.26 Application of the Suitable Statistical Method for Data Analysis -- 1.27 Standard Operating Procedures for Creating a Stroke Model.
1.28 Conclusion and Future Direction -- References -- Chapter 2: Bilateral Common Carotid Artery Occlusion: Stroke Model -- 2.1 Introduction -- 2.2 Importance of BCCAO -- 2.3 Permanent BCCAO -- 2.4 Transient BCCAO -- 2.5 BCCAO Sham Surgery -- 2.6 Factors Affecting the BCCAO -- 2.6.1 Effect of Ischemic Preconditioning -- 2.7 Effect of ROS -- 2.8 Effect of Mitochondrial Dysfunction -- 2.9 Role of the Apoptotic Pathway -- 2.10 Effect of BCCAO Duration and Animal Model Sex -- 2.11 Effect on Blood-Brain Barrier -- 2.12 Effect of Oxygen Free Radicals -- 2.13 Conclusion -- References -- Chapter 3: Cerebral Venous Sinus Thrombosis Rodent Model -- 3.1 Introduction -- 3.2 Clinical Manifestation, Diagnosis, and Prognosis of CVST -- 3.3 Clinical Recommendation for Management of CVST Patients -- 3.4 Experimental CVST Model Protocol -- 3.5 Precautions -- 3.6 TTC Staining Technique -- 3.7 Neurological Evaluation -- 3.8 CVST as a Preclinical Model for Evaluation of Neuroprotective Agents -- References -- Chapter 4: A Non-human Primate Model for Cerebral Stroke -- 4.1 Introduction -- 4.2 Ischemia Model in NHPs -- 4.3 Major Advantages of NHPs Used as Stroke Model -- 4.4 Ethical Challenges -- 4.5 Permanent MCA Occlusion -- 4.6 Transient MCA Occlusion -- 4.7 Thrombus MCA Occlusion in NHPs -- References -- Chapter 5: Laser Doppler Flowmetry Recording for Rodent Stroke Model Confirmation -- 5.1 Introduction -- 5.2 Laser Doppler Flowmetry -- 5.3 Theory and Basic Principal Laser Doppler Flowmetry -- 5.4 Experimental Applications of Laser Doppler Flowmetry (LDF) -- 5.5 Advantages and Limitations of Laser Doppler Flow Meters -- 5.6 Conclusion -- References -- Chapter 6: Laser Speckle Imaging for Cerebral Ischemia and Reperfusion Injury -- 6.1 Introduction -- 6.2 Basic Principles of Laser Speckle Contrast Imaging -- 6.3 Application in Clinical and Biomedical Research. 6.3.1 Preclinical Application of LSCI in the Rodent Model of Cerebral Ischemic Stroke -- 6.3.2 Applications of LSCI in Stroke Induced Language Impairment -- 6.4 Limitations of the LSCI Technique -- 6.5 Conclusion and Recommendations -- References -- Chapter 7: Cerebrovascular Imaging in a Rodent Stroke Model -- 7.1 Introduction -- 7.2 Cerebrovascular Imaging -- 7.3 Cerebral Vessels Staining with a Combination of Carbon Black Inks -- 7.4 Assessment of Cerebral Vascular Network -- 7.5 Alternative Methods for Cerebral Vascular Anatomy -- 7.6 Current Challenges and Future Prospective -- References -- Chapter 8: Photothrombotic Stroke Model -- 8.1 Introduction -- 8.2 Induction of Photothrombotic Lesion -- 8.2.1 Surgery for Illumination of the Region of Interest -- 8.2.2 Injection and Activation of Rose Bengal -- 8.3 Assessment of Photothrombotic Lesion -- 8.4 Merits and Demerits of the Photothrombotic Stroke Model -- 8.5 Conclusion -- References. |
Record Nr. | UNINA-9910484098603321 |
Singapore : , : Springer, , [2021] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Skin Aging & Cancer : Ambient UV-R Exposure / / edited by Ashish Dwivedi, Neeraj Agarwal, Lipika Ray, Amit Kumar Tripathi |
Edizione | [1st ed. 2019.] |
Pubbl/distr/stampa | Singapore : , : Springer Singapore : , : Imprint : Springer, , 2019 |
Descrizione fisica | 1 online resource (XVII, 143 p. 15 illus., 8 illus. in color.) |
Disciplina | 614.5999 |
Soggetto topico |
Cancer - Research
Dermatology Immunology Bioinformatics Stem cells Nanotechnology Cancer Research Stem Cells Dermatologia Càncer de pell |
Soggetto genere / forma | Llibres electrònics |
ISBN | 981-13-2541-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Chapter 1. Skin anatomy & morphology -- Chapter 2. Cellular & Molecular events: skin aging & cancer -- Chapter 3. Human skin stem cell and aging -- Chapter 4. UV-R induced skin damage: Skin againg & cancer -- Chapter 5. UV-R induced immunomodulation :Skin aging & cancer -- Chapter 6. UV-R and Role of Pigmentation in skin aging & cancer -- Chapter 7. UV-R and Vitamin D synthesis -- Chapter 8. UV-R induced melanin chemi-excitation in melanoma pathogenesis -- Chapter 9. Future prospective of nanotechnology in skin cancer therapeutics -- Chapter 10. Role of bioinformatics in understanding of molecular mechanism and prevention of skin cancer -- Chapter 11. UV-R interaction with skin. Cases of study -- Chapter 12. Monitoring the genotoxic potential of sunlight and DNA photoprotection of sunscreen. |
Record Nr. | UNINA-9910373913703321 |
Singapore : , : Springer Singapore : , : Imprint : Springer, , 2019 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|