top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advancement in the Pathophysiology of Cerebral Stroke [[electronic resource] /] / edited by Ranjana Patnaik, Amit Kumar Tripathi, Ashish Dwivedi
Advancement in the Pathophysiology of Cerebral Stroke [[electronic resource] /] / edited by Ranjana Patnaik, Amit Kumar Tripathi, Ashish Dwivedi
Edizione [1st ed. 2019.]
Pubbl/distr/stampa Singapore : , : Springer Singapore : , : Imprint : Springer, , 2019
Descrizione fisica 1 online resource (VIII, 189 p. 23 illus., 12 illus. in color.)
Disciplina 612
Soggetto topico Human physiology
Neurosciences
Oxidative stress
Radiology
Stem cells
Nanotechnology
Human Physiology
Oxidative Stress
Diagnostic Radiology
Stem Cells
ISBN 981-13-1453-5
981-13-1452-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1. Cerebral stroke: An Introduction -- Chapter 2. Inflammation, oxidative stress, and neurodegeneration -- Chapter 3. Stroke induced blood brain barrier damage -- Chapter 4. Regulation of calcium ions in ischemic neuronal cell -- Chapter 5. Ischemic stroke induced endoplasmic reticulum stress -- Chapter 6. The role of autophagy in ischemic stroke: friend or foe?- Chapter 7. Critical role of mitochondrial autophagy in cerebral stroke -- Chapter 8. Application of neuroimaging in the identification of the pinpoint location of blockage -- Chapter 9. Emerging role of the electromagnetic field in stroke -- Chapter 10. Stem cell therapies for stroke -- Chapter 11. MicroRNA: Significance to stroke diagnosis, prognosis, and therapy -- Chapter 12. Therapeutic Aspects of Nanomedicines in Stroke Treatment -- Chapter 13. Neuroprotective potential of small molecule phytochemicals against stroke -- Chapter 14. Role of UV irradiation on neuroprotective potential of phytochemicals -- Chapter 15. Post-stroke treatment strategies, management, and rehabilitation.
Record Nr. UNINA-9910349465703321
Singapore : , : Springer Singapore : , : Imprint : Springer, , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Gut microbiome in neurological health and disorders / / Amit Kumar Tripathi, Malini Kotak, editors
Gut microbiome in neurological health and disorders / / Amit Kumar Tripathi, Malini Kotak, editors
Pubbl/distr/stampa Singapore : , : Springer, , [2022]
Descrizione fisica 1 online resource (315 pages)
Disciplina 612.32
Collana Nutritional Neurosciences
Soggetto topico Gastrointestinal system - Microbiology
ISBN 981-19-4530-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- About the Editors -- Chapter 1: Gut Microbiome Brain Axis: An Introduction -- 1.1 Introduction -- 1.2 Gut Microbiota and Brain -- 1.3 Gut Microbiota and Immune System -- 1.4 Gut Microbiota and Aging -- 1.5 Gut Microbiota and Diseases -- 1.6 Gut Microbiota and Fatty Acids -- 1.7 Gut Microbiota and Pre/Probiotics -- References -- Chapter 2: Cross Talk Between Gut Microbiota and Host Immune Cells -- 2.1 Introduction -- 2.2 Gut Microbiota and Immune System Interaction During Development -- 2.3 Translocation of Microbes in the Gastrointestinal Tract -- 2.4 Communication Between the Host´s Immune Cells and the Intestinal Microbiome -- 2.4.1 Dendritic Cell Relationship with Gut Bacteria -- 2.4.2 IgA and Gut Microbiome -- 2.4.3 Microbiota-Mediated Regulation of Treg Cells, Th17 Cells, and Th1 Cells -- 2.4.4 The Gut Microbiome and Innate Lymphoid Cells -- 2.5 Microbial Metabolite-Mediated Modulation of Host Immunity -- 2.6 Probiotics: An Immune Modulator -- 2.7 Conclusion and Perspectives -- References -- Chapter 3: Microbiota-Gut-Brain Axis and Neurodegenerative Disorder -- 3.1 Introduction -- 3.2 The Gut Microbiome and CNS Connection -- 3.3 Development and Influence of Gut Microbiome -- 3.4 The Gut Microbes and Brain Development -- 3.5 The Gut Microbiota in Neurodegenerative Disorders -- 3.6 A Clinical Connection Between the Gut Microbes and Neurodegenerative Disorders -- 3.7 Routes of Communication -- 3.8 Conclusions and Future Perspectives: A New Hope? -- References -- Chapter 4: Gut Microbiota Regulation of Cerebral Stroke -- 4.1 Introduction -- 4.2 Microbiota Gut-Brain Axis and Its Environmental Axis -- 4.3 Stroke-Induced Gut Dysfunction and Translocation of Gut Microbiota -- 4.4 Western Dietary Pattern and Related Risk Factor for Stroke-Induced Gut Microbiota Alteration.
4.5 Stroke-Induced Gut Inflammatory Immune Response and Brain Infiltration -- 4.6 SCFAs Contributes to Protection Against Cerebral Ischemic Stroke -- 4.7 Stroke Dysbiosis Index Scale for Diagnosis and Prognosis of Stroke Incidence -- 4.8 Regulatory Role of Gut Microbiome in Blood-Brain Barrier Breakage After Stroke -- 4.9 Engineered Microbiota Used for Therapeutic Treatment of Ischemic Stroke -- 4.10 Tools for Regulating Microbiome Gene Expression -- 4.11 Psychobiotics -- 4.12 Neuroprotective Potential of Monobacteriotherapy -- 4.13 Fecal MicroRNA Regulation of Gut Microbiota -- 4.14 Conclusion and Future Directions -- References -- Chapter 5: Aging: Impact of Gut Microbiota -- 5.1 Introduction -- 5.2 Aging Gut Microbiota: Composition -- 5.3 Aging Gut Microbiota: Diet -- 5.4 Aging Gut Microbiota: Pre/Probiotics -- 5.5 Aging Gut Microbiota: Diseases -- 5.6 Conclusion and Future Prospects -- References -- Chapter 6: Gut Microbiome Regulation of Appetite and Role in Neurological Disorders -- 6.1 Introduction -- 6.2 Roles of Intestinal Bacteria -- 6.3 Metabolism -- 6.4 Resistance to Colonization -- 6.5 Appetite Control in Homeostatic Model -- 6.6 Host Energy Homeostasis and Brain -- 6.7 Hedonic Versus Homeostatic Regulation -- 6.8 Bowel Transmission to the Brain -- 6.9 Gut Microbiome Regulates the Appetite -- 6.10 Bacterial Growth Caused by Nutrients -- 6.11 Host Control -- 6.12 Mechanistic Impact of Bacteria from the Gut -- 6.13 The Western Diet Influences the Gut Microbiota -- 6.14 Role of Gut Microbiome in Neurological Disorders -- 6.15 Parkinson´s Disease -- 6.16 Anxiety -- 6.17 Schizophrenia -- 6.18 Autism Spectrum Disorder -- 6.19 Multiple Sclerosis -- 6.20 Alzheimer´s Disease -- 6.21 Epilepsy -- 6.22 Strokes -- 6.23 Conclusion -- References -- Chapter 7: Human Diets, Gut Microbiome, and Neuroinflammation -- 7.1 Introduction.
7.2 Impact of Diet on the Gut Microbiota -- 7.3 Dietary Fat and Carbohydrates -- 7.4 Probiotics and Prebiotics -- 7.5 Micronutrients and Gut Microbiota -- 7.6 Gut Microbiota and Neuroinflammatory Diseases -- 7.7 Alzheimer´s Disease -- 7.8 Autism Spectrum Disorder -- 7.9 Multiple Sclerosis -- 7.10 Conclusion -- References -- Chapter 8: Dietary Fatty Acids, Gut Microbiome, and Gut-Brain Communication: A Current Perspective -- 8.1 Introduction -- 8.2 Role of Long- and Short-Chain Fatty Acids -- 8.3 Alterations in the Gut Ecosystem -- 8.4 Impact of Fatty Acids on Gut Microbiome -- 8.4.1 Effect on Immune System -- 8.4.2 Effect on Gut Ecosystem -- 8.4.3 Effect on Gut Inflammatory Diseases -- 8.4.4 Effect on Obesity -- 8.4.5 Impact on Type 2 Diabetes Mellitus -- 8.5 Dietary Fats-Gut Microbiota: Brain Communication -- 8.6 Conclusion -- References -- Chapter 9: Role of Short-Chain Fatty Acids from Gut Microbiota in Neuroendocrine Pathogenesis Management -- 9.1 Introduction -- 9.2 Occurrence -- 9.3 Chemistry of SCFAs -- 9.4 Role of SCFA and Its Mode of Action in prognosis of diseases -- 9.4.1 Anticancer Activity -- 9.4.2 Gut and Brain -- 9.4.3 Diabetes -- 9.4.4 Inflammatory Regulation -- 9.4.5 Gut Health -- 9.5 Conclusion -- References -- Chapter 10: Potential Role of Probiotics on Gut Microbiota in Neurological Disease -- 10.1 Introduction -- 10.2 Microbiome-Gut-Brain Axis: A Bi-directional Communication System -- 10.2.1 Role and Developmental Role and Mechanism of Action of Gut-Brain Axis -- 10.2.2 Effects of Human Microbiome and Probiotics on ENS, ANS, and CNS -- 10.2.2.1 Effect of Human Microbiome and Probiotics on ENS -- 10.2.2.2 Effects of Human Microbiome and Probiotics on ANS -- 10.2.2.3 Effects of Human Microbiome and Probiotics on Central Nervous System -- 10.3 Neurological Diseases Influenced by Imbalance of Gut-Brain Axis.
10.3.1 Amyotrophic Lateral Sclerosis -- 10.3.2 Epilepsy -- 10.3.3 Autistic Spectrum Disorder -- 10.3.4 Dementia -- 10.3.5 Multiple Sclerosis (MS) -- 10.3.6 Alzheimer´s Disease -- 10.3.7 Anxiety and Depression -- 10.3.8 Schizophrenia -- 10.4 Psychobiotics -- 10.5 Therapeutic Manipulation, Implications, and Future Prospects -- 10.6 Conclusion -- References -- Chapter 11: Reversal of Metabolic Disorder Through the Restoration of Gut Microbiota -- 11.1 Introduction -- 11.2 Role of Phytochemicals in the Gut Restoration -- 11.3 Restoration of Gut Microbiota in AD Via Phytomolecules -- 11.4 Restoration of Gut Microbiota in Diabetes Via Phytomolecules -- 11.5 Restoration of Gut Microbiota in Obesity Via Phytomolecules -- 11.6 Conclusions -- References -- Chapter 12: Gut Microbiome and Diet: Promising Approach for Treatment of Cognitive Impairment -- 12.1 Introduction -- 12.2 Potential of Modified Diet for Treatment of Cognitive Dysfunction -- 12.2.1 High-Fiber Diet -- 12.2.2 Potential of Probiotics for Cognitive Impairment Therapy -- 12.2.3 Potential of Genetically Modified Probiotics (GMP) for Cognitive Impairment Therapy -- 12.3 Fecal Microbiota Transplantation (FMT) as a Cognitive Impairment Therapy -- 12.4 Potential of Physical Training/Exercise for Cognitive Impairment Therapy -- 12.5 Conclusion -- References -- Chapter 13: Nanoplastics, Gut Microbiota, and Neurodegeneration -- 13.1 Introduction -- 13.2 Plastic, Microplastic, and Nanoplastic: Origin and Its Chemical Composition -- 13.2.1 Sources of Nanoplastics -- 13.2.2 Routes of Exposure -- 13.2.3 Additives -- 13.2.4 Impact of Nanoplastic on Gut Microbiota and Its Molecular Mechanism -- 13.2.5 Impact of Additives on Gut Microbiome -- 13.3 Molecular Mechanism -- 13.3.1 Initiation Events (IE) -- 13.3.2 Key Event: Oxidative Stress -- 13.3.3 Activation of Oxidative Stress Pathway.
13.3.4 Impact of MPs/NPs Induced Oxidative Stress on Gut Microbiota -- 13.3.5 Gut Microbiome and Neurodegenerative Disorder -- 13.3.6 Impact of Altered Gut Microbiota Due to Ingested MPs/NPs on Neurodegenerative Diseases -- 13.3.7 Role of Antioxidants -- 13.4 Conclusion -- References -- Chapter 14: Gut Microbiome, COVID-19, and Neurological Impairment -- 14.1 Introduction -- 14.2 Human Diet and COVID-19 -- 14.3 Gut-Lung Axis -- 14.4 Diet and Gut-microbiota in the Population of Developed and Developing Countries -- 14.5 Effect of Microbiota on COVID-19 Cases During Lockdown -- 14.6 Diet Induced Dysbiosis, Inflammation, and Commodity -- 14.7 Personalized Nutritional Invention for Treating COVID-19 -- 14.8 Molecular Mechanism of Microbiota-Virus Interaction -- 14.8.1 Piperine as a Repurposing Molecule for Reversing the COVID-19 Pandemic -- 14.8.2 Interplay Between Gut Microbiome, COVID-19, and Neurological Impairment -- 14.9 Conclusion and Future Perspectives -- References -- Chapter 15: Tools to Study Gut Microbiome -- 15.1 Introduction -- 15.1.1 Gut Microbes Are Highly Abundant -- 15.1.2 The Great Plate Count Anomaly -- 15.1.3 From Microscope to Genoscope -- 15.1.4 Microbiota Establishment in the Gut by Forming Biofilms -- 15.2 Gut Metagenomics Experimental Tool -- 15.2.1 Experimental/Study Design -- 15.2.2 Sample Types, Collection, Handling, and Processing -- 15.2.3 Next-Generation Sequencing -- 15.3 Gut Metagenomics Bioinformatics Tool -- 15.3.1 Preprocessing of Raw Reads -- 15.3.2 Amplicon Analysis -- 15.3.3 Shotgun Analysis -- 15.3.4 Assembly -- 15.3.5 Diversity Measures -- 15.3.6 Challenges -- References -- Chapter 16: Germ-free Mice Technology: Opportunity for Future Research -- 16.1 Introduction -- 16.2 Germ-Free Mice Technology -- 16.2.1 History -- 16.2.2 GF Technology -- 16.2.3 Customized Flora and Control Group for Experiments.
16.3 Why Mice Model?.
Record Nr. UNINA-9910586598403321
Singapore : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Models and techniques in stroke biology / / Amit Kumar Tripathi, Abhishek Kumar Singh, editors
Models and techniques in stroke biology / / Amit Kumar Tripathi, Abhishek Kumar Singh, editors
Pubbl/distr/stampa Singapore : , : Springer, , [2021]
Descrizione fisica 1 online resource (vii, 115 pages) : illustrations
Disciplina 574.028
Soggetto topico Biology - Technique
Malalties cerebrovasculars
Models biològics
Manuals de laboratori
Soggetto genere / forma Llibres electrònics
ISBN 981-336-679-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Contents -- About the Editors -- Chapter 1: Rodent Stroke Model Guidelines: An Update -- 1.1 Introduction -- 1.2 The General Guideline for a Rodent Model for Stroke -- 1.3 STAIR Committee, Recommendations, and Guidelines -- 1.4 Intraluminal Model -- 1.5 Different Types of the Occluder and their Success Rate -- 1.6 PLL-Coated Occluders -- 1.7 Flame Blunted Occluders -- 1.8 Silicone-Rubber Coated Occluders -- 1.9 An Optimization Technique for Intraluminal Inserting Occluders -- 1.10 Optimization of Surgical Procedure -- 1.11 The Tamura Method of a Stroke Model -- 1.12 Infarction Area Estimation -- 1.13 Methods for Infarction Visualization -- 1.14 Direct Image of Infarction in Fresh Brain Sections Stained with TTC Solution -- 1.15 Digital Method for Defining the Infarction -- 1.16 Calculation of Infarction Volume -- 1.17 Preparation of Stroke Surgical Procedure -- 1.18 Koizumi´s Suture Method -- 1.19 Longa´s MCAO Method -- 1.20 Neurobehaviour Assessment of Functional Recovery -- 1.21 Assessment of Neurological Functional Outcomes -- 1.21.1 Composite Score -- 1.21.1.1 Bederson Scale and Neurological Deficit Scoring -- 1.21.1.2 Modified Neurological Severity Score -- 1.21.2 Motor Tests -- 1.21.2.1 Cylinder Test -- 1.21.2.2 Ledged Tapered Beam Test -- 1.21.2.3 Pellet Retrieval Task -- 1.21.3 Sensorimotor Test -- 1.21.3.1 Forelimb Flexion -- 1.21.3.2 Forelimb Placing -- 1.21.3.3 Accelerated Rotarod Test -- 1.21.3.4 Adhesive Removal Test -- 1.22 Anesthetics -- 1.23 Monitoring and Maintaining the Core Brain Temperature -- 1.24 Mechanical Ventilation, Blood Gases, Glucose, and Blood Pressure Monitoring -- 1.25 Pilot Study Plan and Implementation of a Preclinical Stroke Trial -- 1.26 Application of the Suitable Statistical Method for Data Analysis -- 1.27 Standard Operating Procedures for Creating a Stroke Model.
1.28 Conclusion and Future Direction -- References -- Chapter 2: Bilateral Common Carotid Artery Occlusion: Stroke Model -- 2.1 Introduction -- 2.2 Importance of BCCAO -- 2.3 Permanent BCCAO -- 2.4 Transient BCCAO -- 2.5 BCCAO Sham Surgery -- 2.6 Factors Affecting the BCCAO -- 2.6.1 Effect of Ischemic Preconditioning -- 2.7 Effect of ROS -- 2.8 Effect of Mitochondrial Dysfunction -- 2.9 Role of the Apoptotic Pathway -- 2.10 Effect of BCCAO Duration and Animal Model Sex -- 2.11 Effect on Blood-Brain Barrier -- 2.12 Effect of Oxygen Free Radicals -- 2.13 Conclusion -- References -- Chapter 3: Cerebral Venous Sinus Thrombosis Rodent Model -- 3.1 Introduction -- 3.2 Clinical Manifestation, Diagnosis, and Prognosis of CVST -- 3.3 Clinical Recommendation for Management of CVST Patients -- 3.4 Experimental CVST Model Protocol -- 3.5 Precautions -- 3.6 TTC Staining Technique -- 3.7 Neurological Evaluation -- 3.8 CVST as a Preclinical Model for Evaluation of Neuroprotective Agents -- References -- Chapter 4: A Non-human Primate Model for Cerebral Stroke -- 4.1 Introduction -- 4.2 Ischemia Model in NHPs -- 4.3 Major Advantages of NHPs Used as Stroke Model -- 4.4 Ethical Challenges -- 4.5 Permanent MCA Occlusion -- 4.6 Transient MCA Occlusion -- 4.7 Thrombus MCA Occlusion in NHPs -- References -- Chapter 5: Laser Doppler Flowmetry Recording for Rodent Stroke Model Confirmation -- 5.1 Introduction -- 5.2 Laser Doppler Flowmetry -- 5.3 Theory and Basic Principal Laser Doppler Flowmetry -- 5.4 Experimental Applications of Laser Doppler Flowmetry (LDF) -- 5.5 Advantages and Limitations of Laser Doppler Flow Meters -- 5.6 Conclusion -- References -- Chapter 6: Laser Speckle Imaging for Cerebral Ischemia and Reperfusion Injury -- 6.1 Introduction -- 6.2 Basic Principles of Laser Speckle Contrast Imaging -- 6.3 Application in Clinical and Biomedical Research.
6.3.1 Preclinical Application of LSCI in the Rodent Model of Cerebral Ischemic Stroke -- 6.3.2 Applications of LSCI in Stroke Induced Language Impairment -- 6.4 Limitations of the LSCI Technique -- 6.5 Conclusion and Recommendations -- References -- Chapter 7: Cerebrovascular Imaging in a Rodent Stroke Model -- 7.1 Introduction -- 7.2 Cerebrovascular Imaging -- 7.3 Cerebral Vessels Staining with a Combination of Carbon Black Inks -- 7.4 Assessment of Cerebral Vascular Network -- 7.5 Alternative Methods for Cerebral Vascular Anatomy -- 7.6 Current Challenges and Future Prospective -- References -- Chapter 8: Photothrombotic Stroke Model -- 8.1 Introduction -- 8.2 Induction of Photothrombotic Lesion -- 8.2.1 Surgery for Illumination of the Region of Interest -- 8.2.2 Injection and Activation of Rose Bengal -- 8.3 Assessment of Photothrombotic Lesion -- 8.4 Merits and Demerits of the Photothrombotic Stroke Model -- 8.5 Conclusion -- References.
Record Nr. UNINA-9910484098603321
Singapore : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Skin Aging & Cancer [[electronic resource] ] : Ambient UV-R Exposure / / edited by Ashish Dwivedi, Neeraj Agarwal, Lipika Ray, Amit Kumar Tripathi
Skin Aging & Cancer [[electronic resource] ] : Ambient UV-R Exposure / / edited by Ashish Dwivedi, Neeraj Agarwal, Lipika Ray, Amit Kumar Tripathi
Edizione [1st ed. 2019.]
Pubbl/distr/stampa Singapore : , : Springer Singapore : , : Imprint : Springer, , 2019
Descrizione fisica 1 online resource (XVII, 143 p. 15 illus., 8 illus. in color.)
Disciplina 614.5999
Soggetto topico Cancer research
Dermatology
Immunology
Bioinformatics
Stem cells
Nanotechnology
Cancer Research
Stem Cells
Dermatologia
Càncer de pell
Soggetto genere / forma Llibres electrònics
ISBN 981-13-2541-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1. Skin anatomy & morphology -- Chapter 2. Cellular & Molecular events: skin aging & cancer -- Chapter 3. Human skin stem cell and aging -- Chapter 4. UV-R induced skin damage: Skin againg & cancer -- Chapter 5. UV-R induced immunomodulation :Skin aging & cancer -- Chapter 6. UV-R and Role of Pigmentation in skin aging & cancer -- Chapter 7. UV-R and Vitamin D synthesis -- Chapter 8. UV-R induced melanin chemi-excitation in melanoma pathogenesis -- Chapter 9. Future prospective of nanotechnology in skin cancer therapeutics -- Chapter 10. Role of bioinformatics in understanding of molecular mechanism and prevention of skin cancer -- Chapter 11. UV-R interaction with skin. Cases of study -- Chapter 12. Monitoring the genotoxic potential of sunlight and DNA photoprotection of sunscreen.
Record Nr. UNINA-9910373913703321
Singapore : , : Springer Singapore : , : Imprint : Springer, , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui